Свойства сердечной мышцы и ее заболевания. Физиологические свойства сердечной мышцы Физиологические свойства и особенности сердечной мышечной ткани

Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводи­мость и сократимость.

Автоматия. Под автоматией понимают способность сердеч­ной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставля­емых к сердцу кровью.

Доказательством автоматии сердца послужили следующие на­блюдения и эксперименты.

Изолированное сердце, т. е. выведенное из организма и поме­щенное в питательный раствор, продолжает самопроизвольно со­кращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться.

На способности работать без воздействия внешних раздражи­телей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии.

В чем причина такого уникального свойства сердца? У боль­шинства беспозвоночных животных автоматия связана с нервны­ми ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризу­ются после каждого потенциала действия. Эти клетки называ­ются пейсмекерами, или «задающими сердечный ритм», или во­дителями сердечного ритма. Такая теория автоматии сердца на­зывается миогенной.

Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца.

Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с други­ми участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел - водителем ритма сердца первого порядка.

Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через не­которое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей систе­мы - атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел пе­рестает генерировать возбуждение, то водителем ритма сердца ста­новится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка.

В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию


синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами.

Какова природа автоматии? Методами электрофизиологии ус­тановлено, что потенциал действия (ПД) клеток проводящей сис­темы отличается от других мышечных и нервных клеток. Во время расслабления сердца - диастолы - начинается медленно нараста­ющая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу пос­ле возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяриза­ция мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определен­ного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетель­ствует о ее возбуждении.






Интервал между двумя ПД зависит от длительности медлен­ной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-

Ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокраще­ний сердца уменьшаются. При возрастании скорости деполяриза­ции мембраны, напротив, пороговый уровень деполяризации воз­никает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела.

Медленная диастолическая деполяризация обусловлена осо­бенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокар­да являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембра­не, проницаемость которых регулируется заряженными частица­ми - ионами Са 2+ или Мп 2 . Медленная диастолическая депо­ляризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медлен­ный вход сначала натрия, а затем кальция в мембрану. Когда ко­личество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполя­ризации и ПД достигает своего максимального уровня.

В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, - актуальная задача современной кар­диологии.

Возбудимость. Возбудимость - свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей.

В естественных условиях раздражителем является ПД, возни­кающий в синусном узле и распространяющийся по проводя­щей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердеч­ный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражите­лей могут быть использованы механические, термические или хи­мические воздействия, если их величина превышает порог возбу­димости сердца.

При болезнях сердца, сопровождающихся нарушением сердеч­ного ритма, больным вживляют в сердце миниатюрные электро­ды, питающиеся от батареек. Импульсы тока подаются непосред­ственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновре­менное возбуждение всех мышечных волокон, после чего восста­навливается работа сердца.


Во время возбуждения в сердце возникают физико-хими­ческие, морфологические и биохимические изменения, кото­рые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возник­новению ПД.

В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б).

Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают со­кратиться до того, как какое-либо из этих волокон начнет рас­слабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяри­зации возбудимость сердца резко снижается. Это - фаза аб­солютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсо­лютная рефрактерность очень кратковременная, измеряется деся­тыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время сис­толы на сердце действует какой-либо раздражитель, даже сверх­пороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и со­кращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращает­ся не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности.

Во время нисходящей фазы реполяризации, которая совпада­ет с началом расслабления сердечной мышцы, возбудимость серд­ца начинает восстанавливаться. Это - фаза относитель­ной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочеред­ное возбуждение и сокращение сердца под действием раздра­жителя в период относительной рефрактерности называется экстрасистолой.

Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-

дечного цикла, при этом после­довательность сокращений пред­сердий и желудочков не изменя­ется. Если же возбуждение возни­кает в желудочках, то после вне­очередного сокращения (экстра­систолы) появляется удлинен­ная пауза. Интервал между экст­расистолой и следующей (очередной) систолой желудочков на­зывается компенсаторной паузой (рис. 6.4.).

Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрак­терной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда вос­становится.

После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости - экзаль­тации, когда сердце готово ответить даже на подпороговое раздражение.

Проводимость. Проводимость - свойство сердечной мышцы проводить возбуждение.

Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсер­дия. В предсердиях, где очень небольшое количество проводя­щих атипичных мышечных волокон, возбуждение распространя­ется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях.

Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер-


дия начинается немного раньше, чем левого. Сокращение же ле­вого и правого предсердий происходит одновременно.

После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого воз­буждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспече­нии последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в ат­риовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла - и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце.

Механизмы атриовентрикулярной задержки не выяснены. Воз­можно, влияет низкая амплитуда ПД в клетках-пейсмекерах дан­ного узла, сильная натриевая инактивация, большое сопротивле­ние межклеточных контактов.

Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактиру­ют с сократительными волокнами миокарда, и возбуждение пере­дается с проводящей системы на рабочие мышцы.

Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла - 0,5...0,8 м/с; в атриовентрикулярном узле - 0,02...0,05; по проводящей сис­теме желудочков - до 4,0; в сократительной мышце желудоч­ков - 0,4 м/с.

Непосредственная связь проводящей системы сердца с рабочи­ми кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка воз­буждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую син­хронизацию процесса возбуждения рабочего миокарда.

В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от ос­новных стволов проводящей системы (ножек пучка Гиса) практи­чески одновременно распространяется на правый и левый желу­дочки, обеспечивая их одновременное сокращение.

Направление возбуждения внутри желудочков различно у жи­вотных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхно­сти мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество воло­кон в районах эндокарда, эпикарда и в глубине стенки активиру­ется практически одновременно.

В межжелудочковой перегородке возбуждение начинается в
центральной части и движется к верхушке и атриовентрикулярной
перегородке, причем верхняя часть желудочков активируется поз- ]
же; однако на правой и левой сторонах межжелудочковой перего­
родки возбуждение возникает одновременно. j

Особенности распространения возбуждения в сердце име­ют значение при анализе электрокардиограммы - записи био­токов сердца.

Сократимость. Сокращение - специфический признак воз­буждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и явля­ется функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками - актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц соглас­но теории скольжения протофибрилл Хаксли.

Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями, ; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение каль­ций, депонированный в саркоплазматическом ретикулуме.

Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее вре­мя представляется следующим образом. Потенциал действия, воз­никший на поверхности мембраны мышечного волокна, по попе­речным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с вы­соким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость.

Во время возбуждения активируются натриевые каналы в мембра­нах Т-трубочек и в миоплазму входят ионы натрия и кальция из меж­клеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазма­тическом ретикулуме. Под воздействием потенциала действия повы­шается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изме­нения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препят­ствующий скольжению протофибрилл).


После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напря­жение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем рас­пад АТФ катализируется актомиозиновым комплексом, обладаю­щим АТФ-азной активностью.

Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное по­ложение, и мышца расслабляется.

Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влия­нии кальция и магния - его антагониста на работу сердца. Извест­но, что при перфузии изолированного сердца раствором, не содер­жащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстян­ки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой.

Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых ис­пользуется не только для механического сокращения, но и для ра­боты ионных насосов - кальциевого и калиево-натриевого.

Сократительные свойства сердечной мышцы несколько отли­чаются от скелетных. Если скелетная мышца реагирует на раздра­жение в соответствии с его силой, то сердечная мышца подчиня­ется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ниче­го»), а на пороговое раздражение отвечает максимальным сокра­щением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения.

В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал дей­ствия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно со­кращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывает­ся небольшим. В сердечной же мышце волокна рабочего, т. е. со­кратительного, миокарда соединены межклеточными контактами


(выростами плазматических мембран), что способствует практи­чески одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием.

Закон Боудича является скорее правилом с определенными ог­раничениями. При подпороговом раздражении сокращение, дей­ствительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вы­звать распространяющийся потенциал действия. С другой сторо­ны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни.

Другая характерная особенность сердечной мышцы заключает­ся в том, что сила сокращения сердца зависит от степени растяже­ния мышечных волокон во время диастолы, когда полости запол­няются кровью. Это - закон Франка - Старлинга. Указанная за­кономерность объясняется тем, что при растяжении сердца кро­вью во время диастолы актиновые нити несколько вытягиваются из промежутков между миозиновыми, и при последующем сокра­щении возрастает число генерирующих силу поперечных мости­ков. Кроме того, при растягивании сердечной мышцы в ней повы­шается сопротивление упругих элементов, и во время сокращения они играют роль «пружины», увеличивая силу сокращения.

Особенно важное значение закон Франка - Старлинга имеет во время усиленной работы сердца, когда возрастает объем крови, по­ступающей в него во время диастолы. Увеличение силы сокращения приводит к тому, что вся кровь выбрасывается при систоле желудоч­ков в артериальные сосуды, иначе после каждого сокращения в серд­це оставалась бы значительная порция крови. При отсутствии боль­шой нагрузки и небольшом объеме кровотока сила сокращения серд­ца умеренная. Таким образом сердце способно регулировать в извест­ных пределах силу сокращения в зависимости от объема кровотока.

Сердце представляет собой две половинки (левую и правую), каждая из которых в свою очередь состоит из предсердия и желудочка. Левая половинка сердца производит нагнетание артериальной крови, а правая – венозной. В связи с этим, сердечная мышца левой половины значительно больше и толще правой. Мышцы предсердий и желудочков разделены между собой фиброзными кольцами, имеющими специальные клапаны: двухстворчатый - у левой сердечной половины, и трехстворчатый – у правой. Эти клапаны, в момент сердечных сокращений не допускают возврата крови в предсердие. На выходе из аорты и легочной артерии размещаются клапаны, напоминающие визуально полумесяц. Они не допускают возврата крови в желудочки в период общей диастолы сердца.

Сердечная мышца относится к поперечнополосатой мышечной ткани. Именно поэтому она имеет те же самые свойства, что и мышцы скелета. Волокна, из которого они состоят это в основном - сарколеммы, миофибриллы и саркоплазмы.

Посредством сердца обеспечивается циркуляция крови по кровеносным сосудам. Ритмичное сокращение мышц предсердий, а также желудочков, чередуется с их расслаблением. Периодичная смена систолы и диастолы и составляет основной цикл работы сердца. Мышца сердца работает достаточно ритмично, и обеспечивается это специальной системой возбуждения, находящейся в разных сердечных отделах.

Физиологические особенности сердечной мышцы

Возбудимостью миокарда называется способность реагировать на воздействие термических, электрических, химических или механических раздражителей. Сокращение и возбуждение сердечной мышцы происходит в тот момент, когда раздражитель достигает своей максимальной силы. Возбуждения низкого воздействия не эффективны, а чрезмерные - не изменяют силы сокращения миокарда.

Возбужденная сердечная мышца на короткий промежуток времени утрачивает способность реагировать, на поступающие дополнительно раздражители и импульсы. Такая реакция называется рефрактерностью. Раздражители, которые с силой воздействуют на мышцу в период ее рефрактерности, провоцируют внеочередное сокращение сердца, называемое экстрасистолой.

В различных отделах сердца скорость возбуждения отличается. Характерной особенностью процесса возбуждения в сердечной мышце является ее потенциал действия, возникая в одном участке мышечной ткани, он постепенно распространяется и на соседние ее участки.

Сердечная мышца обеспечивает жизнедеятельность всех тканей, клеток и органов. Транспорт веществ в организме осуществляется благодаря постоянной циркуляции крови; она же обеспечивает и поддержание гомеостаза.

Строение сердечной мышцы

Сердце представлено двумя половинами - левой и правой, каждая из которых состоит из предсердья и желудочка. Левая половина сердца нагнетает а правая - венозную. Поэтому сердечная мышца левой половины значительно толще правой. Мышцы предсердий и желудочков разделены фиброзными кольцами, которые имеют атриовентрикулярные клапаны: двухстворчатый (левая половина сердца) и трехстворчатый (правая половина сердца). Данные клапаны во время сокращения сердца предупреждают возврат крови в предсердье. На выходе аорты и легочной артерии размещаются полумесячные клапаны, которые предупреждают возврат крови в желудочки во время общей диастолы сердца.

Сердечная мышца принадлежит к поперечнополосатой Поэтому эта мышечная ткань имеет те же свойства, что и скелетные мышцы. Мышечное волокно состоит из миофибрилл, саркоплазмы и сарколеммы.

Благодаря сердцу обеспечивается циркуляция крови по кровеносным сосудам. Ритмическое сокращение мышц предсердий и желудочков (систола) чередуется с ее расслаблением (диастола). Последовательная смена систолы и диастолы составляет цикл Сердечная мышца работает ритмично, что обеспечивается системой, проводящей возбуждение в разных отделах сердца

Физиологические свойства сердечной мышцы

Возбудимость миокарда — это способность ее реагировать на действия электрических, механических, термических и химических раздражителей. Возбуждение и сокращение сердечной мышцы наступает тогда, когда раздражитель достигает пороговой силы. Раздражения слабее порогового не эффективны, а сверхпороговые не изменяют силы сокращения миокарда.

Возбуждение мышечной ткани сердца сопровождается появлением Он укорачивается при учащении и удлиняется при замедлении сокращений сердца.

Возбужденная сердечная мышца на короткое время утрачивает способность отвечать на дополнительные раздражения или импульсы, поступающие из очага автоматии. Такая невозбудимость называется рефрактерностью. Сильные раздражители, которые действуют на мышцу в период относительной рефрактерности, вызывают внеочередное сокращение сердца — так называемую экстрасистолу.

Сократимость миокарда имеет особенности в сравнении со скелетной мышечной тканью. Возбуждение и сокращение в сердечной мышце длятся дольше, чем в скелетной. В сердечной мышце преобладают аэробные процессы ресинтеза Во время диастолы происходит автоматическое изменение одновременно в нескольких клетках в разных частях узла. Отсюда возбуждение распространяется по мускулатуре предсердий и достигает атриовентрикулярного узла, который считают центром автоматии ІІ порядка. Если выключить синоатриальный узел (наложением лигатуры, охлаждением, ядами), то через некоторое время желудочки начнут сокращаться в более редком ритме под влиянием импульсов, возникающих в атриовентрикулярном узле.

Проведение возбуждения в разных отделах сердца неодинаковое. Следует сказать, что у теплокровных животных скорость проведения возбуждения по мышечным волокнам предсердий составляет около 1,0 м/с; в проводящей системе желудочков до 4,2 м/с; в миокарде желудочков до 0,9 м/с.

Характерной особенностью проведения возбуждения в сердечной мышце является то, что потенциал действия, возникший в одном участке мышечной ткани, распространяется на соседние участки.

Материалы для самостоятельной работы студентов

(Составители – ,)

СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ

1. Механизмы электрогенеза миокардиальных клеток

Функциональным элементом сердца является мышечное волокно - цепочка из клеток миокарда, соединенных “конец в конец” и заключенных в общую саркоплазматическую оболочку.

Потенциал покоя (ПП) миокардиальных волокон формируется за счет высокой проницаемости поверхностной протоплазматической мембраны миокардиального волокна для катионов калия. Возникновение потенциалов действия (ПД) обусловлено открытием на­триевых потенциалзависимых каналов поверхностной прото­плазма­тической мембраны. Значительный вклад в генерацию ПД миокардиальных волокон вносят потенциалзависимые кальциевые каналы. Возбуждение распространяется по сердцу без декре­мента, механизм распространения - электрический.

Сердечная мышца неоднородна в своем клеточном со­ставе. Различают типичные (сократительные) и атипичные волокна мио­карда. Они различаются по строению, функции и электрической активности. DIV_ADBLOCK99">


Иначе выглядят мембранные потенциалы, регистрируемые в атипичных волокнах миокарда (АТМВ). В них нет устойчивого уровня поля­ризации. Электриче­ская активность АТМВ представляет собой непрерывные колебания мем­бранного потенциала. По достижении им определенной величины (пример­но - 60 мВ) спонтанно начинает развиваться мед­ленная диастолическая депо­ляризация . На уровне около -40 мВ процесс депо­ляризации ускоряется, кривая идет круче (рис. 1, А), что соответ­ствует возникновению в АТМВ потен­циала действия. Деполяризация сменяется реполяризацией, в конце которой вновь начинается медленная диастолическая деполяризация, лежащая в основе само­произвольной ритмической активности сердца .

Свойство миокарда возбуждаться под влиянием ПД, спон­танно возникающих в нем самом, на­зывается автоматизмом (автоматией). Электрические процессы, связанные с ним, происходят в АТМВ. Таким образом, атипичные миокардиальные волокна служат источником автоматизма сердечной мышцы.

2. Особенности распространения возбуждения по миокарду

Атипичная миокардиальная ткань сосредоточена в виде островков в различных отделах сердца, объединяющихся в проводящую систему сердца (рис. 2). Особенности проведения возбуждения по миокарду связаны со способом соединения между собой его отдельных волокон. Под электронным микроскопом между ни­ми обнаружили особые вставочные диски. Они пред­ставляют собой дубликатуры мембран, в которых имеются щелевые контакты между соседними волокнами. Открытие вставочных дис­ков дало основание рассматривать миокард как функциональный синцитий, поскольку электри­ческий импульс (ПД), возникший в одном волокне, распростра­няется на соседние посредством электрической передачи. Благодаря этому сердцу присущи свойства гомогенной возбудимой системы. Так, в реакциях на одиночные раздражения миокард подчиняется закону “все или ничего”. Электрическая связь сущест­вует не только между типичными мышечными волокнами сер­дца. Аналогично связаны атипичные миокардиальные волокна как между собой, так и с типичными мышечными волокнами. Поэтому возбуждение, ритмически возникающее в АТМВ, легко переходит на ТМВ и рас­пространяется по всему сердцу.

Между скоплениями атипичной миокардиальной ткани уста­новлена четкая субординация: ведущим является то скопление АТМВ, которое расположено в правом предсердии - между венозным синусом и ушком - синоатриальный узел . Когда он автоматичес­ки воз­буждается, другие островки АТМВ выполняют толь­ко функцию проведения. Их собственный автоматизм угнетен. Поэтому синоатриальный узел называют пейсмекером - водителем ритма, так как ритм его автоматических возбуждений определяет частоту сердечных сокращений. Количественной мерой автоматизма различных АТМВ является частота спонтанных возбуждений. Чем она больше, тем выше уровень автоматизма. Основным водителем ритма служит группа из примерно 5000 атипичных волокон, занимающих около 3,5% объема этого узла. Отдельные волокна, входящие в группу, возбуждаются синхронно и синфазно, что обеспечивается электротоническим характером их взаимо­действия. Передача возбуждения на другие группы АТМВ синоатриального узла, а также на ТМВ предсердий осуществляется посредством ПД. Благодаря тому, что водителем ритма является не одиночное АТМВ а группа волокон, сердце имеет высокую надежность в поддержании спонтанных колебаний.

С АТМВ синоатриального узла возбуждение переходит на ТМВ предсердий и проводится по ним со скоростью около 1 м/с. Уже через 40 мс от возникновения ПД в водителе ритма все участки предсердий находятся в возбужденном состоянии. Возбуждение распространяется по предсердиям широким фронтом, что обеспечивается наличием щелевых контактов не только между торцами отдельных миокардиальных волокон, имеющих продоль­ное расположение, но и между их боковыми поверхностями. Однако плотность щелевых контактов в торцевых


Рис. 2. Схема строения проводящей системы сердца.

вставочных дисках выше, чем в боковых, поэтому по направлению к желудочкам возбуждение движется быстрее, чем поперек предсердий. Тем са­мым достигается сокращение всего миокарда пред­сердий с одномоментным выходом волны возбуждения на атриовентрикулярный узел проводящей системы сердца. Как известно, предсердия отделены от желудочков фиброзной тканью, которая не способна проводить возбуждение. Вместе с тем, в этой преграде есть узкая щель - шириной чуть более 1 мм и длиной 1,5-2 мм, в которой расположен атрио­вентрикулярный узел, проводящий возбуждение из предсердий в желудочки. В местах контакта с типичным миокардом предсердий АТМВ атриовентри­кулярного узла очень тонки, вследствие чего им присуще значительное элек­трическое сопротивление саркоплазмы. В этом одна из причин резкого в 20-50 раз замедления распространения возбужде­ния в атриовентрикулярном узле по сравнению с предсердия­ми. Другая причина заключается в том, что АТМВ в верх­ней части узла имеют не продольное, а поперечное расположение. Следова­тельно, по направлению к желудочкам возбуждение передается через боковые, а не более эффективные торцевые вставочные диски.

Замедленное проведение возбуждения из предсердий в же­лудочки обеспечивает важную для нормальной работы сердца паузу между сокраще­ниями. Ее называют атриовентрикулярной задержкой. Желудочки начинают сокра­щаться примерно через 0,1 с от начала сокращения предсердий. Задержка нужна для того, чтобы кровь, накопленная пред­сердиями в диастолу, полностью перешла в желудочки до того, как они начнут сокращаться, нагнетая ее в аорту.

Из атриовентрикулярного узла возбуждение поступает в пучок Гиса . Там скорость проведения возбуждения возрастает до 2-3 м/c. Увеличение скорости обусловлено утолщением АТМВ и повыше­нием плотности ще­левых контактов во вставочных дисках. Ближе к верхушке сердца от пучка Гиса отходят волокна Пуркинье . Эти атипичные миокардиальные волокна вступают в контакт с ТМВ желудочков. Волокна Пуркинье обладают наибольшим диаметром по сравнению с другими волокнами миокарда. Поэтому скорость проведения возбуждения здесь достигает 4-5 м/с. Воз­буждение с отдельных волокон Пуркинье переходит на огром­ное число ТМВ практически одномоментно, благодаря чему разные участки желудоч­ков сокращаются синфазно.

3. Электромеханическое сопряжение в миокарде

Сокращение миокардиальных волокон, как и волокон скелетных мышц, инициируется потенциалом действия. Тем не менее временные соотноше­ния между параметрами потенциала действия и параметрами сокращения этих мышечных волокон различны. Длитель­ность потенциала действия скелетных мышц составляет несколько миллисе­кунд, и сокращение их начинается после завершения развития потенциала действия. В миокарде потенциал действия и сокращение в значительной степени перекрываются во времени. Потенциал действия клеток миокарда заканчивается пос­ле начала фазы расслабления. Поскольку последующее сокращение может возник­нуть только в результате очередного возбу­ждения, а это возбуждение в свою очередь возможно лишь по окончании периода аб­солютной рефрактерности предшествующе­го потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией оди­ночных сокращений, или тетанусом . Это свойство миокарда имеет боль­шое значение для реализации нагнетательной функции сердца: с одной стороны - тетаническое сокращение, продолжающееся больше периода изгнания крови, препятствовало бы наполнению сердца, с другой - тетаническое сокращение сердца эквивалентно его остановке.

Невозможность сердечной мышцы давать тетанические сокращения заставило детально проанализировать вопрос о механизмах регуляции силы сердечных сокращений. Как было отмечено, сократимость сердца не может регулироваться путем суммации одиночных сокращений, со­кратимость мио­карда в отличие от ске­летных мышц, не может изменяться путем включения раз­лич­ного числа моторных еди­ниц, так как миокард предста­вляет собой функцио­нальный синцитий, и в каждом его сокращении участвуют все во­локна. Однако, эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде возможность регуляции сократимости обес­пе­чивается путем направленного изменения процессов возбуждения и электро­механического сопряжения.

Как организован механизм электромеханического сопряжения в миокарде? У человека и у млекопитающих структуры, отвечающие за электроме­ханическое сопряжение в скелетных мыш­цах, в основном, имеются и в волокнах серд­ца. Для мио­карда харак­терна система поперечных трубочек (Т-система); особенно хо­рошо она развита в желудочках, где эти трубочки образуют продольные ответв­ле­ния. Напротив, систе­ма продольных трубочек, служащих внутри­клеточным резервуаром Са2+, в мышце сердца выражена в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимо­связи между внутриклеточными депо Са2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са2+во время потенциала действия. Значение входного кальциевого тока состоит не толь­ко в том, что он увеличивает длительность потенциала действия и, как следствие, ре­фракторного периода: перемещение Са2+ из наружной среды в клетку создает условия для регуляции силы сокращения, так как чем больше кальция оказывается вблизи актина и миозина, тем сильнее сокращается

Активация" href="/text/category/aktivatciya/" rel="bookmark">активацией сократительного аппарата. Начало сокращения связано с выходом кальция в зону актина и миозина из продольных трубочек в ходе деполяризации мембраны. Кальций, поступающий в кардиомиоцит через кальциевые каналы в фазу плато потенциала действия кардиомиоцита, пополняет запасы кальция в продольных трубочках.

На концентрацию кальция, активирую­щего контрактильный ме­ха­низм, существенно влияет его количество в продольных трубочках, при этом показано, что значительная часть входящего в клетку Са2+ пополняет его запасы, обеспечивая достаточную эффективность очередных сокращений.

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. 1. Он играет роль пускового механизма, вызывающего сокра­щение путем высвобождения Са2+ преимущественно из внутриклеточных депо. 2. Он пополняет запасы Са2+, создавая благоприятные условия для последующих сокра­щений.

Как выяснилось, целый ряд агентов оказывает значимое влияние на сокращение миокарда, изменяя длительность потенциала действия, что отра­жается на поступлении Са2+ внутрь миокардиоцитов. Например, ацетилхолин, выделяющий в окончаниях блуждающего нерва, уменьшая продолжительность потенциалов действия предсердной мышцы, параллельно усиливая прони­цаемость поверхностной мембраны клеток синоатриального узла для калия, вызывая тем самым их гиперполяризацию и уменьшение входного тока Са2+, вызывает уменьшение частоты и силы сердечных сокращений (отрицательный хронотропный, инотропный, дромотропный эффекты - см. ниже.). Напротив, норадреналин, выделяющийся в окончаниях симпатических нервных волокон, усиливая проницаемость для Са2+ , вызывает повышение частоты и увеличение силы сердечных сокращений (положительный хроно­тропный, инотропный, дромотропный эффекты - см. ниже).

Так назы­ваемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с наращиванием внутриклеточной фракции Са2+. Сила сокращения сердца быстро изменяется при изменении содержания Са2+ во внеклеточной жидкости. Удаление Са2+ из внешней среды приводит к полному электро­механическому разобщению. Ряд веществ, блокирующих вход Са2+ во время потенциала действия, оказывает та­кой же эффект, как и удаление Са2+ из внешней среды. К таким веществам отно­сятся двухвалентные катионы (Ni 2+ , Со2+, Mn 2+ ), а также некоторые органические со­единения - антагонисты кальция (верапамил, нифедипин). При повышении внеклеточно­го содержа­ния Са2+ или при действии фармакологических препаратов, увеличивающих вход Са2+ во время развития потенциала действия, сократимость сердца увеличивается. Механизм действия сердечных гликозидов (дигоксин, строфантин) частично связан именно с увеличением внутриклеточной фракции Са2+.

4. Биофизические основы электрокардиографии

Особенности распространения возбуждения по сердцу отобража­ются в элек­трокардиограмме (ЭКГ ), которая имеет харак­терную форму (рис. 4). Элемен­тарной моделью генератора ЭКГ является электрический диполь. При распространении возбуждения по миокарду формируется множество диполей, которые законо­мерно изменяют свои количест­венные характеристики и направление. В каждый момент времени воз­никают новые диполи, исчезают прежние. В результате на поверхности сердечной мышцы создается сложная мозаика распределения электрических потенциалов. Резуль­тирующий диполь­ный момент миокарда, ра­вный векторной сумме отдельных диполей, получил название интегрального электрического вектора сердца (ИЭВС). Ритмичный характер ав­томатизма водителя ритма, а также пере­дача возбуждения посредством электриче­ских синапсов обусловливают синфазность возбуди­тельного процесса в миокардиальных волокнах. Поэтому ИЭВС имеет срав­нительно большую амплитуду прежде всего при деполяризации желудочков, чем соз­­да­ется высокий уровень биопотенциалов, отражающих сердечную деятель­ность даже на поверхности тела. Ежемоментно амплитуда и направление ИЭВС различ­ны. Измеряя их, врач получает сведения о движении волны возбуждения по сердцу, что позволяет ему оценить свойства миокарда и в случае нарушений сердечной деятельности понять их природу.

https://pandia.ru/text/80/111/images/image005_20.jpg" width="306 height=259" height="259">

Рис. 5. Соотношение векторэлектрокардиограммы (А) и электрокардиограммы (Б).

В данном случае фигуры Лиссажу представляют собой траектории движения ИЭВС, описываемые его концом на плоскости, перпендикулярной направлению распространения возбуждения по миокарду. Такое исследование электрической ак­тивности сердца называется векторэлектрокардиоскопией (ВЭКС ). На век­тор­­электрокардио­грамме выделяют обычно три эллипсоподобные фигуры. Самая мелкая из них отображает деполяризацию предсердий, самая крупная - деполя­ризацию желудочкой, средняя - их реполяризацию.

Амплитуду вектора оценивают посредством измерения его проекций на координатные оси. Любое из отведений ЭКГ есть не что иное как проекция интегрального электрического векто­ра сердца на соответствующую координатную ось.

DIV_ADBLOCK101">

Важным параметром ЭКГ служат временные интервалы. По ним оценивают скорость распространения возбуждения в каж­дом из отделов проводящей сис­темы сердца. Изменения скоро­сти проведения наблюдаются при повреж­дениях сердечной мышцы. Даже мелкий очаг поражения миокарда (диаметром 5-10 мкм) вызывает задержку в рас­пространении возбуждения на 0,1 мс.

В стандартных отведениях зубец Р имеет амплитуду не бо­лее 0,25 мВ и длительность 0,07-0,10 с. Интервал PQ, отображающий атрио-вентрикулярную задержку, составляет 0,12-0,21 с при частоте сердечных сокращений порядка 70 /мин. Комплекс QRS наблюдается в течение всего времени, пока возбуждение распространяется по желудочкам - от 0,06 до 0,09 с. Зубец Q в трети наблю­дений отсутствует в нормаль­ной ЭКГ, а когда обнаруживается, не превышает 0,25 мВ. Зубец R обладает максимальной амплитудой среди других эле­ментов ЭКГ. Она составляет 0,6-1,6 мВ. Зубец S -часто отсутствует, но иногда достигает 0,6 мВ. Он появляется в тот момент, когда деполяризация охватывает участки желудочков, прилежащие к предсердиям. Основание желудочков возбужда­ется в последнюю очередь. Сегмент S-T при пульсе 65-70 /мин составляет 0,12 с. Длительность зубца Т немного больше - от 0,12 до 0,16 с. Его амплитуда находится в преде­лах 0,25-0,6 мВ.

Зубец Р возникает на ЭКГ примерно за 0,02 с до начала сокращения предсердий, а комплекс QRS - за 0,04 с до начала сокращения желудочков. Сле­довательно, электрические проявления возбужде­ния предше­ствуют меха-ническим.

Имея ряд ЭКГ, по крайней мере, две, снятые в 1 и 3 отведениях, можно синтезировать ИЭВС. В медицинской лите­ратуре его называют электрической осью сердца - отрезок прямой, соединяющий два сечения миокарда, облада-ющих в данный момент наибольшей разностью потенциалов. Направление электри­ческой оси сердца в ходе рас­простра­нения возбуждения по миокарду постоянно изменяется. При­нято определять среднюю электрическую ось сердца. Так назы­вают вектор, который можно построить в промежутке между началом и окончанием деполяризации миокарда желудочков. По расположению средняя электрическая ось близка анатоми­ческой оси сердца. По­строение средней электрической оси дает представление о по­ложении сердца в грудной полости. Отклонения оси вправо или влево служат признаками изменений миокарда соответствую­щего желудочка.

Сердечная мышца, так же как и скелетная, обладает возбудимостью, проводимостью и сократимостью, но эти свойства сердечной мышцы имеют свои особенности. Сердечная мышца сокращается медленно и работает в режиме одиночных сокращений, а не титанических как скелетная. Значение этого легко понять, если вспомнить, что сердце при своей работе перекачивает кровь из вен в артерии и должно наполняться кровью в промежутках между сокращениями.

Если сердце раздражать частыми ударами электрического тока, то оно в отличие от скелетных мышц не приходит в состояние непрерывного сокращения: наблюдаются отдельные более или менее ритмичные сокращения. Это объясняется длительной рефрактерной фазой, присущей сердечной мышце.

Рефрактерной фазой называется период не возбудимости, когда сердце утрачивает способность отвечать возбуждением и сокращением на новое раздражение.

Эта фаза длится весь период систолы желудочка. Если в это время раздражать сердце, то никакого ответа не последует. На раздражение, нанесенное в период диастолы, сердце, не успев расслабиться, отвечает новым внеочередным сокращением-экстрасистолой, после которой следует длительная пауза, называемая компенсаторной.

Сердце обладает автоматизмом. Это значит, что импульсы к сокращению возникают в нем самом, тогда как к скелетным мышцам они приходят по двигательным нервам из центральной нервной системы. Если перерезать все нервы, подходящие к сердцу, или даже отделить его от организма, оно будет длительно ритмически сокращаться.

Электрофизиологическими исследованиями установлено, что в клетках проводящей системы сердца ритмически возникает деполяризация клеточной мембраны, обусловливающая появление возбуждения, которое вызывает сокращение мускулатуры сердца.

Проводящая система сердца

Система, проводящая возбуждение в сердце, состоит из атипичных мышечных волокон, обладающих автоматизмом, и включает синусно-предсердный узел, расположенный в области впадения полых вен, предсердно-желудочковый узел, расположенный в правом предсердии, вблизи его границы с желудочками, и предсердно-желудочковый пучок. Последний, начинаясь от одноименного узла, проходит межпредсердную и межжелудочковую перегородки и делится на две ножки - правую и левую. Ножки опускаются под эндокардом по межжелудочковой перегородке к верхушке сердца, где ветвятся и в виде отдельных волокон - проводящих сердечных миоцитов (волокна Пуркинье) распространяются под эндокардом по всему желудочку.

В сердце здорового человека возбуждение возникает синусно-предсердном узле. Этот узел называют водителем ритма. По пучку атипических мышечных волокон оно распространяется к предсердно-желудочковому узлу, а от него по предсердно-желудочковому пучку - к миокарду желудочков. В предсердно-желудочковом узле скорость проведения возбуждения заметно снижается, поэтому предсердия успевают сократиться прежде, чем начнется систола желудочков. Таким образом, система, проводящая возбуждение, не только рождает импульсы возбуждения в сердце, но и регулирует последовательность сокращений предсердий и желудочков.

Ведущую роль синусно-предсердного узла в автоматизме сердца можно показать в опыте: при местном согревании области узла деятельность сердца ускоряется, а при охлаждении замедляется. Согревание и охлаждение других частей сердца не влияет на частоту его сокращений. После разрушения синусно-предсердного узла деятельность сердца может продолжаться, но в более медленном ритме - 30-40 сокращений в минуту. Водителем ритма становится предсердно-желудочковый узел. Эти данные свидетельствуют о градиенте автоматизма, о том, что автоматизм разных отделов системы, проводящей возбуждение неодинаков.

Поделиться