Поведение разных пород рыб на электричество. GSA

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Происходят, например, во многих растениях. Но самым удивительным носителем этой способности являются электрические рыбы. Их дар вырабатывать разряды сильной мощности не доступен ни одному виду животных.

Зачем рыбам электричество

О том, что некоторые рыбы могут сильно «бить» затронувшего их человека или животное, знали еще древние жители морских побережий. Римляне считали, что в этот момент у обитателей глубин выделяется какой-то сильный яд, вследствие которого у жертвы наступает временный паралич. И только с развитием науки и техники стало понятно, что рыбам свойственно создавать электрические разряды разной силы.

Какая рыба - электрическая? Ученые утверждают, что эти способности свойственны почти всем представителям названного вида фауны, просто у большинства из них разряды небольшие, ощутимые только мощными чувствительными приборами. Используют они их для передачи сигналов друг другу - как средство общения. Сила излучаемых сигналов позволяет определить в рыбьей среде, кто есть кто, или, иными словами, выяснить силу своего противника.

Электрические рыбы используют свои особые органы для защиты от врагов, в качестве оружия поражения добычи, а также как локаторы-ориентиры.

Где у рыб электростанция?

Электрические явления в организме рыб заинтересовали ученых, занимающихся явлениями природной энергии. Первые эксперименты по изучению биологического электричества проводил Фарадей. Для своих опытов он использовал скатов как самых сильных производителей зарядов.

Одно, на чем сошлись все исследователи, что основная роль в электрогенезе принадлежит клеточным мембранам, которые способны раскладывать положительные и отрицательные ионы в клетках, в зависимости от возбуждения. Видоизмененные мышцы соединены между собой последовательно, это и есть так называемые электростанции, а соединительные ткани - проводники.

"Энергодобывающие" органы могут иметь самый различный вид и место размещения. Так, у скатов и угрей это почкообразные образования по бокам, у рыб-слонов - цилиндрические нити в районе хвоста.

Как уже было сказано, производить ток в том или ином масштабе свойственно многим представителям этого класса, но есть настоящие электрические рыбы, которые опасны не только для других животных, но и для человека.

Электрическая рыба-змея

Южноамериканский электрический угорь не имеет ничего общего с обычными угрями. Назван он так просто по внешнему сходству. Эта длинная, до 3 метров, змееобразная рыба весом до 40 кг способна генерировать разряд напряжением в 600 вольт! Тесное общение с такой рыбешкой может стоить жизни. Даже если сила тока не станет непосредственной причиной смерти, то к потере сознания приводит точно. А беспомощный человек может захлебнуться и утонуть.

Электрические угри живут в Амазонке, во многих неглубоких реках. Местное население, зная их способности, не заходит в воду. Электрическое поле, производимое рыбой-змеей, расходится в радиусе 3 метров. При этом угорь проявляет агрессию и может нападать без особой на то надобности. Наверное, он это делает с перепугу, так как основной рацион его составляет мелкая рыбешка. В этом плане живая «электроудочка» не знает никаких проблем: выпустил зарядик, и завтрак готов, обед и ужин заодно.

Семейство скатов

Электрические рыбы - скаты - объединяются в три семейства и насчитывают около сорока видов. Им свойственно не только вырабатывать электричество, но и аккумулировать его, чтобы использовать в дальнейшем по назначению.

Основная цель выстрелов - отпугивание врагов и добыча мелкой рыбешки для пропитания. Если скат выпустит за один раз весь свой накопленный заряд, его мощности хватит, чтобы убить или обездвижить крупное животное. Но такое происходит крайне редко, так как рыба - скат электрический - после полного «обесточивания» становится слабой и уязвимой, ей требуется время, чтобы снова накопить мощность. Так что свою систему энергоснабжения скаты строго контролируют с помощью одного из отделов мозга, который выполняет роль реле-выключателя.

Семейство гнюсовых, или электрических скатов, называют еще «торпедами». Самый крупный из них - обитатель Атлантического океана, черный торпедо (Torpedo nobiliana). Этот которые достигают в длину 180 см, вырабатывает самый сильный ток. И при близком контакте с ним человек может потерять сознание.

Скат Морсби и токийский торпедо (Torpedo tokionis) - самые глубоководные представители своего семейства. Их можно встретить на глубине 1 000 м. А самый маленький среди своих собратьев - индийский скат, его максимальная длина - всего 13 см. У берегов Новой Зеландии живет слепой скат - его глаза полностью спрятаны под слоем кожи.

Электрический сом

В мутных водоемах тропической и субтропической Африки живут электрические рыбы - сомы. Это довольно крупные особи, от 1 до 3 м в длину. Сомы не любят быстрых течений, живут в уютных гнездах на дне водоемов. Электрические органы, которые расположены по бокам рыбы, способны производить напряжение в 350 В.

Малоподвижный и апатичный сом не любит уплывать далеко от своего жилища, выползает из него для охоты по ночам, но также и непрошеных гостей не любит. Встречает он их легкими электрическими волнами, ими же и добывает себе добычу. Разряды помогают сому не только охотиться, но и ориентироваться в темной мутной воде. Мясо электрического сома считается деликатесом у местного африканского населения.

Нильский дракончик

Еще один африканский электрический представитель царства рыб - нильский гимнарх, или аба-аба. Его изображали на своих фресках фараоны. Обитает он не только в Ниле, но в водах Конго, Нигера и некоторых озер. Это красивая «стильная» рыбка с длинным изящным телом, длиной от сорока сантиметров до полутора метров. Нижние плавники отсутствуют, зато один верхний тянется вдоль всего тела. Под ним и находится «батарейка», которая производит электромагнитные волны силой 25 В практически постоянно. Голова гимнарха несет положительный заряд, а хвост - отрицательный.

Свои электрические способности гимнархи используют не только для поиска пищи и локации, но и в брачных играх. Кстати, самцы гимнархов просто потрясающе фанатичные отцы. Они не отходят от кладки икринок. И стоит только приблизится кому-то к детям, папа так окатит нарушителя электрошокером, что мало не покажется.

Гимнархи очень симпатичны - их вытянутая, похожая на дракончика, мордочка и хитрые глазки снискали любовь среди аквариумистов. Правда, симпатяга довольно агрессивен. Из нескольких мальков, поселенных в аквариум, в живых останется только один.

Морская корова

Большие выпуклые глаза, вечно приоткрытый рот, обрамленный бахромой, выдвинутая челюсть делают рыбу похожей на вечно недовольную сварливую старуху. Как называется электрическая рыба с таким портретом? семейства звездочетов. Сравнение с коровой навевают два рожка на голове.

Эта неприятная особь большую часть времени проводит, зарывшись в песок и подстерегая проплывающую мимо добычу. Враг не пройдет: корова вооружена, как говорится, до зубов. Первая линия нападения - длинный красный язычок-червячок, которым звездочет заманивает наивных рыбок и ловит их, даже не вылезая из укрытия. Но если надо, то она взметнется мгновенно и оглушит жертву до потери сознания. Второе оружие для собственной защиты - позади глаз и над плавниками расположены ядовитые шипы. И это еще не все! Третье мощное орудие расположено сзади головы - электрические органы, которые генерируют заряды напряжением в 50 В.

Кто еще электрический

Вышеописанные - это не единственные электрические рыбы. Названия не перечисленных нами звучат так: гнатонем Петерса, черная ножетелка, мормиры, диплобатисы. Как видите, их немало. Наука сделала большой шаг вперед в изучении этой странной способности некоторых рыб, но разгадать полностью механизм аккумуляции электроэнергии большой мощности полностью не удалось и до нынешнего времени.

Рыбы лечат?

Официальная медицина не подтвердила обладание электромагнитного поля рыб целебным эффектом. Но медицина народная издавна использует электрические волны скатов для излечения многих болезней ревматического характера. Для этого люди специально прогуливаются вблизи и получают слабые разряды. Вот такой себе натуральный электрофорез.

Электрических сомов жители Африки и Египта используют для лечения тяжелой стадии лихорадки. Для повышения иммунитета у детей и укрепления обшего состояния экваториальные жители заставляют тех прикасатся к сомам, а также поят водой, в которой некоторое время плавала эта рыба.

Часто можно слышать утверждение, что первый, кто приступил к объединению полей (электрического, магнитного и светового), был Максвелл, при этом, по-видимому, забывают Фарадея, решающими усилиями которого удалось объединить атмосферное, химическое, магнитное, вольтово, обыкновенное, животное, термо- и трибоэлектричество в единое поле - электрическое. Любопытный эпизод из истории этого объединения воспринимается с позиции сегодняшних знаний как "чудачество" великих. Путешествуя по Европе, 28-летний Фарадей со своим знаменитым учителем Деви оказался в Генуе. После ознакомления со старинными крепостями, они заинтересовались рыбаками, разгружавшими обильный улов рыбы. Их внимание привлекли электрические скаты, с помощью которых они тут же попытались разложить воду на водород и кислород. Если животное электричество производит такое же действие, как и другие электрические силы, то значит природа их одна и та же. К сожалению, опыт не удался - скаты ни за что не хотели выстраиваться в батареи и по команде разряжаться.

В наше время все-таки научились управлять разрядами электрических рыб по желанию экспериментатора, выдрессировав их по классическому методу образования условных рефлексов. Для дрессировки, например, африканского электрического сома потребовалось три месяца.

Способность некоторых рыб на расстоянии поражать и "гипнотизировать" свою жертву была известна еще древним грекам. "Эта рыба, - писал Аристотель, имея ввиду таинственного ската Torpedo, обитающего у берегов Средиземного моря, - заставляет цепенеть животных, которых она хочет поймать, пересиливая их силой удара, живущего у нее в теле". Кстати, предсказанная легендарным слепым прорицателем Тиресием смерть Одиссея ("смерть настигнет тебя вне моря и из моря") наступила от раны копьем, имевшим наконечник из плавника ската.

Но древним удавалось добиваться и положительных результатов по использованию животного электричества в практических целях. Достоверно известно, что врач императора Нерона лечил его от ревматизма электрическим массажем и электрованнами следующим образом: в большую деревянную кадку пускали электрических скатов, производящих электрические разряды. Такую электрическую ванну и принимал император. Надо полагать, лечение было успешным, поскольку ни Тацит, ни Светоний - летописцы древнего Рима - ничего не рассказывают о казни этого врача - участи, ожидавшей каждого, кто причинил хоть малейшее страдание великому деспоту.

Способность живых тканей генерировать электричество не является исключительной привилегией рыб. Электричество вырабатывают нервные, мышечные и железистые ткани любых живых существ. Поэтому не удивительно, что именно излучение электрических явлений в живых тканях и открыло эру электричества.

С помощью специальных зондов удалось зарегистрировать электрические поля вокруг нервов, мышц и сердца лягушки. Уверенно прослеживается поле человека на расстоянии 10 - 25 см от его поверхности. Зафиксировано даже электрическое поле шмеля во время его полета. Но наибольшей способностью генерировать и использовать электричество природа наделила некоторых рыб. О них в дальнейшем и пойдет речь.

Многие виды рыб обладают свойством не только поражать жертву Jims, спасаться от хищника, но и воспринимать окружающий мир с помощью электрических полей. Хотя электрический мир ощущений, присущий рыбам, нам не доступен, но познавательное значение этой проблемы несомненно. Смоделировать электрические органы чувств - весьма заманчивая задача. К сожалению, физика процессов в электрическом мире рыб почти не исследовалась. Остается довольствоваться пока сведениями, полученными в области физиологии и электробиологии.

Из 20 тысяч видов рыб около 800 из них способны генерировать электричество, однако целенаправленное его использование известно лишь для нескольких десятков видов рыб. В соответствии с различным назначением электрических органов электрические рыбы подразделяются на сильноэлектрические, использующие электричество с целью нападения и обороны, и слабоэлектрические, приспособившие электрические поля для локации и связи. Сильноэлектрические рыбы генерируют резкие кратковременные разряды, мощность которых в импульсе может достигать 0,6 кВт, а амплитудное напряжение - 1200 В (электрический угорь) при силе тока до 1,2 А. Создаваемое ими мощное электрическое поле простирается на расстояние до 5 м. Пораженную электрическим ударом рыбу-жертву словно сводит судорога: она, изогнувшись, цепенеет, растопырив плавники и жаберные крышки. Парализованными оказываются и мелкие животные, например, лягушка, попавшая в зону электрического разряда. Встревоженный раздражителями любой физической природы, угорь "разряжается" серией следующих друг за другом мощных импульсов, способных не только убить мелких животных, но даже напугать или контузить крупных, в том числе и человека. Поэтому аборигены, обитающие в поймах южноамериканских рек, переходя реку вброд, гонят перед собой крупный рогатый скот или лошадей, нейтрализуя таким образом боеспособность в изобилии водящихся там электрических угрей.

Упоминавшиеся выше электрические скаты из рода Torpedo способны развивать мощность в импульсе до б кВт (Torpedo accident alia), величина тока разряда может достигать у них 50 А. Структура разрядов достаточно сложна. Каждый разряд распадается на серии, продолжительность и последовательность которых обусловлена степенью возбуждения. В серии можно насчитать до 150 залпов в секунду, в свою очередь залп - последовательность импульсов (от 2 до 10), продолжительность импульса в залпе от 3 до 5 мсек. Количество импульсов в залпе зависит от размера жертвы или степени возбуждения.

Электролокационные свойства слабо электрических рыб также не вышли еще за пределы феноменологического описания. Генерируя электрические импульсы, рыбы создают в пространстве поле, топография которого зависит не только от размеров рыб и их электрических органов, но и от проводимости воды и диэлектрических свойств погруженных в нее объектов. Но как осуществляется высокая разрешающая способность электролокации рыб, каким образом они отфильтровывают полезные сигналы от шумовых - совершенно не ясно.

Весьма любопытно, что даже такие обыкновенные для наших краев рыбы как караси и пескари, чувствуют электрическое поле и, более того, излучают электрические сигналы, хотя и довольно слабые. Обнаружены и чувствительные органы, воспринимающие электрическое поле: они расположены в системе органов чувств боковой линии. Некоторые из них, так называемые ампулы Лоренцини, представляют собой длинные трубочки, заполненные желеобразным веществом, внутри которых и находятся клетки с нервными окончаниями. Экспериментально установлено, что рыбы не только не хуже, а некоторые и лучше самых чувствительных приборов, созданных до сих пор человеком, регистрируют малейшее изменение напряженности электрического поля. Но и это не все. Они чувствуют и магнитное поле!

Однако, разделение электрических рыб на сильно- и слабо электрические, конечно же условно. Часть из них, как например, черный нож - призрак, обитающий в бассейне реки Амазонки, способен не только глушить свою добычу электрическими разрядами подобно скатам, но и обладает электрической эхолокационной системой, позволяющей производить "обзор" окружающего пространства. Он испускает каскад очень слабых разрядов с частотой до одного килогерца. Отраженные от цели импульсы улавливаются специальными рецепторными клетками, связанными нервными волокнами с мозгом. Как удается ему регистрировать слабые эхосигналы на фоне сильных излучаемых сигналов - остается загадкой.

Небезынтересен коллективный эффект рыб, объединенных в стаи. Слабые электрические поля отдельных рыб обусловливают довольно сильное результирующее поле ориентированной стаи, которое, в свою очередь, может координировать движение отдельных особей. С помощью электрических сигналов рыбы общаются между собой. Они, как по команде, почти одновременно совершают различные маневры (поворот, ускорение или за-медление движения, погружение или всплывание), ищут корм и добычу, метят свою территорию, привлекают к себе особей другого пола.

Знаменитый физик XX века, лауреат Нобелевской премии Р.Фрейман утверждал что «практически нет ни одного явления в природе, которое не сопровождалось бы электричеством». И живая и неживая природа это единый мир бытия. Не только астрофизические объекты, но и мы с вами, и все летающие, и плавающие и ползающие - своеобразные генераторы электричества. Поэтому было бы очень странно, если бы природа не воспользовалась представившейся ей возможностью использовать электрические и магнитные поля как носители информации.

По воспоминаниям другого лауреата Нобелевской премии П.Л. Капицы, в 40-е годы академик Иоффе довольно успешно занимался «осуществлением оригинальной конструкции электростатического генератора», который по своему устройству и надежности превосходил электромагнитные. Тогда-то у Иоффе и возникла идея перевести энергетику страны на их основу. Главным соображением в пользу выдвинутой им идеи было то, что электростатические генераторы не только проще по своей конструкции, но могут сами непосредственно вырабатывать ток высокого напряжения для линий электропередач без промежуточных трансформаторных станций. Л.П.Капице пришлось опровергать осуществимость такого проекта из-за малой плотности потока преобразуемой энергии в таких генераторах.

А вот для царства электрических рыб этот критерий (вектор Умова-Пойнтинга) - не помеха для использования электростатических генераторов. Природа снабдила их источниками электрического напряжения, которые пока надежно скрывают свои многочисленные секреты от людей.

В квартире, и на улице, на работе и на отдыхе за городом нас окружают невидимые и практически неощутимые электромагнитные поля (ЭМП). Развитие жизни на планете Земля во многом обусловлено этим важнейшим экологическим фактором.

Среди основных сенсорных систем (органов чувств) рыб, к которым относят слуховую, зрительную, вкусовую, обонятельную, осязательную, сейсмосенсорную системы, общее химическое чувство, имеется еще одна система чувств, имеющая немаловажное значение в жизни рыб — электрорецепторная система чувств.

Начиная с 1960-х годов, в мире проводятся интенсивные исследования значения самых разнообразных электрических полей в жизни рыб. Особый интерес к этим работам вызван и тем, что в последние десятилетия резко возросло воздействие на рыб различных электромагнитных полей искусственного происхождения. Сильные поля в водной среде сегодня наводятся при работе электрорыбозаградителей, электролове рыбы, в ходе морской геофизической разведки (при использовании методов электрозондирования), "благодаря" работе мощных радиостанций, радиолокаторов, преобразователей электрической энергии, высоковольтных линий электропередач (ЛЭП).

Первые работы в области электрорецепции, электроориентации и чувствительности рыб к электромагнитным полям были начаты в России под руководством В. Р. Протасова. В его труде "Биоэлектрические поля в жизни рыб" (1972) приводились данные о так называемых слабо- и сильноэлектрических рыбах, о механизмах восприятия ими магнитных и электрических полей и их значении в жизни подводных обитателей. Эти исследования положили начало новому направлению биологической науки — электроэкологии.

Всех морских и пресноводных рыб по их способности воспринимать или генерировать самостоятельно электрические поля разделяют на 3 группы: сильноэлектрические; слабоэлектрические и неэлектрические, "обычные" виды.

Сильноэлектрические виды (пресноводный электрический угорь, электрические скат и сом, американский звездочет), у которых в процессе эволюции появились специальные электрические органы, вырабатывающие вокруг тела рыбы сильное электрическое поле с целью нападения или обороны. Для сильноэлектрических рыб способность генерировать в особых органах ток необходима для привлечения жертв, так как электрическое поле вокруг рыбы приводит к электролизу воды, происходит обогащение воды кислородом, что приманивает к угрю рыб, лягушек и других водных животных. Кроме того, сильное электрическое поле способно ввести жертву в состояние электронаркоза. Доказано, что электрическая деятельность облегчает угрю… дыхание в заморных водоемах и болотах: происходит разложение воды в теле рыбы и обогащение крови кислородом, причем водород выводится рыбой наружу. В незаморных водоемах угорь использует собственное электрическое поле как своеобразный "электролокатор" для поиска жертв.

У слабоэлектрических рыб образовывать импульсные электрические поля способны так называемые электрогенерирующие ткани. Эти рыбы применяют свои способности для локации и связи. Слабоэлектрические пресноводные рыбы испускают слабые и кратковременные разряды с постоянной частотой импульсов. Умеют использовать электрические поля и некоторые сельдевые и осетровые рыбы. Обладают способностью испускать электрические разряды такие общеизвестные рыболовам виды как красноперка, карась, окунь, пескарь, вьюн, щука. Первые два вида испускают кратковременные разряды, окунь, пескарь и вьюн — средние по продолжительности, щука — наиболее длительные разряды.

Слабоэлектрические рыбы излучают слабые электрические сигналы. В 1958 году Р. Лиссман установил, что они используют электрополе для ориентации и общения в водной среде.

К неэлектрическим, "обычным" рыбам относится подавляющее большинство видов. Они не могут самостоятельно генерировать электротоки и обладают крайне слабой чувствительностью к электрическим и электромагнитным полям. У этих рыб нет особых морфологических структур для восприятия электрического тока и электромагнитных полей, поэтому их чувствительность ограничивается восприятием полей с напряженностью не более нескольких милливольт на сантиметр.

Таким образом, следует различать 1) нечувствительных (слабочувствительных) к электрическим полям и 2) высокочувствительных (электрочувствительных) рыб, обладающих специализированными электрорецепторами, способными в природной среде воспринимать слабые электрические токи напряженностью от сотых долей до единиц микровольта на сантиметр. Способность чувствовать изменения напряженности электромагнитных полей в водной среде помогают этим рыбам находить добычу, ориентироваться в пространстве, общаться в стаде, уходить из опасной зоны при природных катастрофах.

К высокочувствительным представителям ихтиофауны наших водоемов относят осетровых и сомовых рыб. Интересно, что при исследовании степени восприимчивости разных пресноводных рыб к воздействию электрического тока оказалось, что наибольшей чувствительностью обладала щука, наименьшей — линь и налим, что объясняется наличием у последних толстого слоя слизи, снижающего способность восприятия слабых электрических полей рецепторами кожи.

Учеными-электроэкологами установлено, что не менее 300 из современных 20,9 тысяч видов рыб способны использовать в своей жизни электрические поля. И не только использовать, но и генерировать его "собственноручно"! Например, в конце 1980-х — начале 1990-х гг. группой ученых Института эволюционной морфологии и экологии животных РАН было доказано, что черноморские скаты рода Raja (морские лисицы) могут передавать и принимать собственные электрические сигналы на расстоянии до 7-10 метров, что значительно превышает возможность общения этих хрящевых рыб при помощи других дистантных органов чувств (Барон и др., 1985, 1994).

Восприятие рыбами электрических (электромагнитных) полей. Слабые электрические токи и магнитные поля воспринимаются главным образом рецепторами кожи рыб. Многочисленные исследования показали, что почти у всех слабо- и сильноэлектрических рыб электрорецепторами служат производные органов боковой линии. У акул и скатов электрорецептивную функцию выполняют так называемые ампулы Лоренцини — особые слизистые железы в коже.

Более сильные электромагнитные поля воздействуют непосредственно на нервные центры водных организмов.

Слабоэлектрические рыбы обладают высокой чувствительностью к электрическим полям, что позволяет им находить и различать в воде объекты, определять соленость воды, использовать разряды других рыб с информационной целью в межвидовых и внутривидовых отношениях. Например, обыкновенный сом Silurus glanis имеет высокочувствительную электрорецептивную систему, воспринимающую плотность тока 10-10 А/мм, т. е. речной гигант способен почувствовать в 2-4 метрах от себя разряженную "пальчиковую" батарейку!

Электрические поля постоянного тока воспринимаются рыбами в виде двигательной реакции: они вздрагивают при включении — выключении тока. Если напряженность поля увеличивается, у пресноводных рыб наблюдается оборонительная реакция: рыбы приходят в сильное возбуждение и стараются уплыть из зоны действия поля. У исследованных карася, щуки, окуня, гольяна, осетра резко учащается ритм дыхания. Примечательно, что для одного и того же вида рыб более крупные особи раньше и сильнее реагируют на ток, чем более мелкие.

Если напряженность поля продолжает расти, происходит анодная реакция (движение рыбы по направлению к аноду), после чего рыба теряет равновесие, подвижность, перестает реагировать на внешние раздражители — наблюдается электронаркоз. Еще большее повышение напряженности поля приводит появлению в крови рыб значительного количества ацетилхолина, блокирующего нормальное течение дыхания и деятельность нервной системы, что приводит, в итоге, к гибели рыбы (Протасов, 1972).

Переменный ток вызывает у рыб более сильное возбуждение, чем постоянный. После его воздействия рыба долго не может прийти "в себя" — она находится в состоянии электрогипноза.

В импульсных электрических полях поведение рыб еще более сложно и разнообразно, причем реакции их зависят от частоты, формы и продолжительности импульсов.

Водные организмы и высоковольтные ЛЭП. Развитие энергетики привело к повсеместному распространению высоковольтных линий переменного тока напряжением 500 кВ (так называемые ЛЭП-500). Они тянутся на многие километры, через поля, перелески, луга и водоемы. В зоне линии электропередачи всегда присутствует повышенный электромагнитный фон, обуславливающий сильное воздействие на естественную флору и фауну. Напряженность электрического поля на поверхности земли или воды под ЛЭП-500 (несмотря на 10-15-метровое расстояние до проводов) может достигать 100-150 В/см (Бондарь, Частоколенко, 1988 и др.)

В настоящее время вопрос действия ЛЭП на водные системы очень слабо изучен, причем исследования по данной проблеме начали проводиться только в начале 1980-х гг. Известно, что высоковольтные линии, пересекая природные и искусственные водоемы, наводят в водной среде электрические поля разной величины.

По мнению В. Р. Протасова (1982), напряженность электрических полей переменного тока, образуемых воздушными переходами ЛЭП, достигает 50 мВ/см, подводными переходами (кабельные линии) — более 50 мВ/см, причем плотность тока в воде достигает 10 мкА/мм2. Такие градиенты потенциала могут создавать в водной среде неблагоприятный абиотический фон, так как приближаются к порогу реакции возбуждения большинства неэлектрических рыб. Кстати, при такой плотности тока в водоеме начинается гибель некоторых гидробионтов, например, пресноводной гидры.

Электромагнитные поля (ЭМП), создаваемые ЛЭП, сопоставимы с порогами чувствительности рыб, которые обладают электрорецепторами. ЭМП в состоянии вытеснить многих рыб и беспозвоночных из зоны наведенных электротоков. Большую опасность высоковольтные ЛЭП могут нести в районе пересечения нерестилищ ценных видов рыб, на нерестовом ходу осетровых. Например, веслонос проявляет реакцию избегания при напряженности электрического поля в 15 мкВ/см (Kalmijn, 1974), т. е. еще до попадания в зону наведенных электрических полей.

Однако это не значит, что все рыбы избегают акваторий, над которыми проходят линии электропередачи. Автор настоящей статьи лично наблюдал, как летом 1995 года на большом степном пруду в Кировоградской области (Украина) на глубокой яме под ЛЭП-500 была поймана щука массой почти 10 кг, несомненно, обитавшая там (а не приплывшая откуда-то!) Это притом, что хищница относится к рыбам с наибольшей чувствительностью к воздействию электрического тока.

По мере удаления от линии электропередачи напряженность электрического поля резко уменьшается, поэтому можно говорить об ограниченной зоне электромагнитного загрязнения водоема шириной не более 15-20 метров. Хотя в масштабах большой реки или озера зона электромагнитного негативного влияния может измеряться сотнями квадратных метров.

По мнению новосибирских ученых, при нормальном режиме эксплуатации воздушных линий электропередачи опасная для рыб плотность тока может образовываться только ЛЭП-750 и выше (Войтович, 1998). При прокладке подводных кабелей напряженность электромагнитного поля низкая, если фазы укладываются в треугольник в траншее, вырытой на дне водоема (Данилов и др., 1991).

Специалисты из Новосибирска предложили минимизировать негативное воздействие на ихтиоценозы путем снижения мощности, передаваемой по воздушным и подводным линиям электропередачи, в ключевые периоды жизни рыб — во время нерестовых миграций и нереста; увеличения толщины экрана и брони на кабельных подводных линиях триаксиального исполнения.

Гидробионты и электролов. На многих водоемах СНГ применяется электролов рыбы. Самыми производительными орудиями электролова являются электрифицированные тралы, во время работы которых возникают значительные по величине электромагнитные поля. Электротралы систематически применяются на верхневолжских водохранилищах (в том числе на Горьковском и Рыбинском), в Костромской и Ивановской областях.

В работе применяется электроловильный комплекс ЭЛУ-6М, используется импульсный электрический ток напряжением 450 В и частотой от 20 до 70 Гц (Асланов, 1996).

Осенью 1998 года Институтом биологии внутренних вод РАН (пос. Борок) при участии представителей бассейнового управления Верхневолжрыбвод и Геофизической обсерватории ИФЗ РАН на Горьковском водохранилище проводились комплексные исследования экологических последствий применения ЭЛУ-6М.

Экспериментальные траления с включенными и выключенными электроподборами показали более высокую эффективность электротралового лова рыбы в сравнении с обычным. Мировой опыт эксплуатации систем электролова в морях и пресных водах свидетельствует о том, что электрическое поле обычно повышает уловистость трала на 2-70% (иногда даже более 200%!) Главный эффект от электрификации тралов достигается за счет дезориентации рыб, снижения их подвижности, появления угнетенности, сгона рыб со дна, удерживания пойманных рыб в кутке.

Многочисленные эксперименты показали, что электротрал оказывает положительное влияние на размерный состав пойманных рыб: крупные особи более чувствительны к действию электротока и чаще оказываются в орудиях лова.

Исследователи выяснили, что уловистость близнецового трала в вечерне-ночные часы по сравнению с дневными была на 296-369% выше. Наиболее часто в электротрал попадались густера, судак, щука, жерех, язь, плотва и налим, практически игнорировали наведенные электрические поля и не попадали в орудия лова синец, чехонь, серебряный карась, белоглазка, берш и уклея). Причем серебряный карась чаще отмечался в обычном трале, чем в электрифицированном.

Интересны данные о выживаемости и плавательной способности рыб после попадания в сильное электрическое поле. В ходе дневных и ночных визуальных наблюдений за поверхностью воды (Горьковское водохранилище) на акватории протяженностью более 15 км позади электротрала погибшей рыбы не обнаружено, только 2,6% от общего числа пойманных рыб всплывали на поверхность в состоянии электронаркоза (некрупные жерех, чехонь и уклея). Полное восстановление плавательной способности у рыб происходило мгновенно. Причем более мелкие рыбы восстанавливались после воздействия электрического поля намного быстрее крупных. Например, у 30-сантиметровых жерешат восстановление занимало несколько секунд, а у 43-47-сантиметровых — более 6 минут.

Анализ проб зоопланктона и зообентоса показал отсутствие отрицательных воздействий электрического поля на водных беспозвоночных (Извеков, Лебедева, 2001).

Большинство литературных данных свидетельствует о том, что при соблюдении правил рыболовства и инструкций по эксплуатации ЭЛУ электрическое поле оказывает на рыб в основном дезориентирующее влияние и не приводит к гибели рыб или длительному нарушению плавательных способностей.

"Действие электрического тока на рыбу объясняется различной электрической проводимостью воды и тела рыбы: последняя оказывается своего рода проводником, соединяющим точки электрического поля с разными потенциалами. Электроток течет по этому проводнику от точки с более высоким потенциалом к точке с более низким. При этом сила тока пропорциональна длине рыбы".

Несколько неожиданное подтверждение данным, полученным российскими учеными, получили сотрудники Института биологии Днепропетровского национального университета (Украина). В конце июля 2003 года экспедиционная группа ихтиологов стала свидетелями удара молнии в пойменное озеро близ Днепра. Спустя пять минут ученые оказались на месте происшествия. Мгновенно наведенное сильнейшее электромагнитное поле ввело в электронаркоз более 30 крупных лещей (от 1 до 2,2 кг) и пестрого толстолобика массой более 31 кг. Мелкой рыбы, а тем более малька, в изобилии кормившегося на мелководьях, среди пораженной рыбы не было ни на поверхности, ни на дне. Следовательно, чувствительность крупных особей к электрическим полям оказалась на порядок выше, чем у "мелочи".

Электробраконьерство. Промышленные орудия электролова разрабатывались учеными на протяжении нескольких десятилетий, определялись пороговые значения напряженности электрического поля, влияние использования электротралов на водные системы, возбудимость многих видов рыб при разной напряженности электрического поля в воде. Только после скрупулезных научных исследований орудие лова рыбы такого рода было рекомендовано к использованию в некоторых естественных водоемах.

Принцип действия "электроудочки", которая состоит на вооружении у браконьеров, основывается на поражении любой рыбы запороговыми значениями напряженности электрического поля. "Снасть" состоит из подсачека, к которому подведены провода от аккумулятора и трансформатора-преобразователя, усиливающего разряд от аккумуляторных клемм в 50-150 и более раз. Фактически, на выходе "электроудочка" имеет до 1000-1500 В, радиус "работы" в зависимости от солевого и минерального состава воды — до 10-12 метров.

При включении прибора в воде напряженность электрических полей может достигать 150-250 мВ/см, а плотность тока в воде превышает 30 мкА/мм2. Такие градиенты потенциала губительны для всего живого под водой. Удар электрическим током у рыб приводит к мгновенному сокращению всех мышц, в результате чего ломается позвоночник, разрывается плавательный пузырь, происходит кровоизлияние во внутренние органы рыб. Животные, попавшие непосредственно в эпицентр действия "электроудочки", практически сразу погибают, те, кто в момент электроудара находился на периферии, получают сильный шок, застывают в наркотизированном ступоре на несколько минут. До 70% рыб в эпицентре получают разрывы плавательных пузырей и тонут, устилая дно водоема толстым слоем.

Такие картины наблюдались спортсменами-подводниками на днепровских водоемах неоднократно.

Кстати, рыба, которой посчастливилось уплыть из зоны поражения и сачка браконьера, в течение нескольких сезонов не имеет возможность отнереститься из-за образующихся в половых путях спаек. В июле 2001 года на Днепродзержинском водохранилище рыболовами-любителями О. Старушенко, С. Зуевым, Р. Новицким была подобрана с поверхности воды погибающая 17-килограммовая самка сазана. Анатомический анализ показал, что, вероятно, рыба стала жертвой электробраконьерства: во внутренней полости находилось более 6 кг икры, выметать которую рыбина не могла из-за пресловутых спаек в яйцеводах, на гонадах и других органах отмечались многочисленные кровоизлияния.

Учитывая, что ущерб, наносимый природе электробраконьерством, огромен и не поддается точному исчислению, в настоящее время такая "рыбалка" согласно действующему законодательству приравнивается к уголовным преступлениям…

Р. Новицкий , кандидат биологических наук, доцент кафедры зоологии и экологии Днепропетровского национального университета. Профессиональный ихтиолог.

"Спортивное рыболовство № 2 — 2004 г."

Внимание!

В качестве исходного материала использована статья с сайта "Калининградский рыболовный клуб "



Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.

Поделиться