Виды и режимы мышечных сокращений. Виды и режимы мышечного сокращения Режимы и виды мышечного сокращения

Типы мышечных сокращений. По способу укорочения мышц различают три типа мышечных сокращений:

1) изотоническое , при котором волокна укорачиваются при постоянной внешней нагрузке, в реальных движениях проявляется редко (так как мышцы укорачиваясь вместе с тем меняют своё напряжение);

2) изометрическое это тип активации, при котором мышца развивает напряжение без изменения своей длины . На нём построена так называемая статическая работа двигательного аппарата человека. Например, в режиме изометрического сокращения работают мышцы человека, который подтянулся на перекладине и удерживает своё тело в этом положении;

3) ауксотоническое или анизотоническое это режим, при котором мышца развивает напряжение и укорачивается . Именно этот тип мышечных сокращений обеспечивает выполнение двигательных действий человека.

У анизотонического сокращения две разновидности сокращения мышцы: в преодолевающем и уступающем режимах.

В преодолевающем режиме мышца укорачивается в результате сокращения (например, икроножная мышца бегуна укорачивается в фазе отталкивания).

В уступающем режиме мышца растягивается внешней силой (например, икроножная мышца спринтера при взаимодействии ноги с опорой в фазе амортизации).

На рисунке 1 изображена динамика работы мышцы в преодолевающем и уступающем режимах.

Правая часть кривой отображает закономерности преодолевающей работы, при которой возрастание скорости сокращения мышцы вызывает уменьшение силы тяги.

В уступающем режиме наблюдается обратная картина: увеличение скорости растяжения мышцы сопровождается увеличением силы тяги (что является причиной многочисленных травм у спортсменов, например, разрыв ахиллова).

При скорости, равной нулю, мышцы работают в изометрическом режиме.

Для движения звена в суставе под действием мышечных сил важны не сами силы, а создаваемые ими моменты сил , поскольку движение звена – это ни что иное, как вращение относительно оси, проходящей через сустав. Поэтому разновидности работы мышц можно выразить в терминах моментов сил: если отношение момента внутренних сил к моменту внешних рано единице, режим сокращения будет изометрическим, если больше единицы – преодолевающим, если меньше единицы – уступающим. Поддержку сустава можно обеспечить спортивным тейпом .

Групповое взаимодействие мышц. Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, в сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плечелучевая мышцы. В результате синергического взаимодействия мышц увеличивается результирующая сила действия.

Мышцы-антагонисты имеют разнонаправленное действие: если одна из них выполняет преодолевающую работу, то другая – уступающую. Мышцы обеспечивают возвратно-вращательные движения звеньев тела, поскольку каждая из них работает только на сокращение; высокую точность двигательных действий, так как звено необходимо не только привести в движение, но и затормозить в нужный момент. Антагонисты состоят из пары: агонист (сгибатель) – антагонист (разгибатель).

Мощность и эффективность мышечного сокращения. По мере увеличения скорости мышечного сокращения сила тяги мышцы, функционирующей в преодолевающем режиме, снижается по гиперболическому закону (см. рис. 1). Известно, что механическая мощность равна произведению силы на скорость (N = F V). Существует сила и скорость, при которых мощность мышечного сокращения наибольшая; этот режим возникает, когда и сила, и скорость составляют примерно 30 % от максимально возможных величин.

Накопление энергии упругой деформации в растянутых мышцах и сухожилиях. Когда сокращению мышц предшествует фаза растяжения, производимые силы, мощность и работа достигают больших величин по сравнению с сокращением без предварительного растяжения. После растяжения скорость сокращения увеличивается за счёт скорости восстановления упругих компонентов мышцы.

Растяжение мышечно-сухожильной системы позволяет также накапливать и использовать энергию упругой деформации. Было подсчитано, что ахиллово сухожилие растягивается на 18 мм во время бега со средней скоростью , при этом накапливается энергия в 42 Дж. Нелинейная зависимость между величиной растяжения и накапливаемой энергией показывает, что при больших растяжениях накапливается больше энергии, чем при малых. Эластичное растяжение внесёт значительный вклад в мышечную деятельность, только если за активным мышечным растяжением немедленно последует преодолевающий режим сокращения мышцы. Более высокая результативность прыжка с подседом по отношению к прыжку из статической позы показывает преимущество предварительного растяжения мышц.

Теория и методика подтягиваний (части 1-3) Кожуркин А. Н.

2.1 ФОРМЫ И ТИПЫ МЫШЕЧНОГО СОКРАЩЕНИЯ.

2.1 ФОРМЫ И ТИПЫ МЫШЕЧНОГО СОКРАЩЕНИЯ.

Сокращение скелетных мышц возникает в ответ на нервные импульсы, идущие от специальных нервных клеток - мотонейронов. В процессе сокращения в мышечных волокнах возникает напряжение. Напряжение, развиваемое при сокращении, реализуется мышцами по-разному, что и определяет различные формы и типы мышечного сокращения. Классификация всевозможных форм и типов мышечных сокращений приведена, в частности, в .

Если внешняя нагрузка меньше, чем напряжение сокращающейся мышцы, то мышца укорачивается и вызывает движение. Такой тип сокращения называют концентрическим или миометрическим. В лабораторных условиях при электрическом раздражении изолированной мышцы, ее укорочение происходит при постоянном напряжении, равном величине внешней нагрузки. Поэтому данный тип сокращения называют также изотоническим (изос - равный, тонус - напряжение). В начале изотонического сокращения увеличивается напряжение мышцы, а когда его величина сравняется с величиной внешней нагрузки, начинается укорочение мышцы.

Если внешняя нагрузка на мышцу больше, чем напряжение, развиваемое во время сокращения, мышца растягивается. Такой тип сокращения называют эксцентрическим или плиометрическим.

С помощью специальных устройств можно регулировать внешнюю нагрузку таким образом, что с ростом напряжения мышцы величина внешней нагрузки в такой же степени увеличивается, а при уменьшении мышечного напряжения - величина внешней нагрузки настолько же снижается. В данном случае при постоянной активации мышц движение осуществляется с постоянной скоростью. Такой тип сокращения мышц называется изокинетическим. Сокращения, при которых мышца изменяет свою длину (концентрические, эксцентрические, изокинетические), относятся к динамической форме сокращения.

Сокращение, при котором мышца развивает напряжение, но не изменяет своей длины, называется изометрическим (изос - равный, метр - длина). Изометрическое сокращение мышц относится к статической форме сокращения. Она реализуется в двух случаях. Во-первых, когда внешняя нагрузка равна напряжению, развиваемому мышцей при сокращении. И во-вторых, когда внешняя нагрузка превышает напряжение мышцы, но отсутствуют условия для растяжения мышцы под влиянием этой нагрузки. Примером второго случая может служить лабораторный эксперимент, в котором раздраженная с помощью электричества изолированная мышца пытается приподнять лежащий на столе груз, величина которого превосходит ее подъемную силу.

В реальных условиях деятельности мышц практически не встречается чисто изометрическое или изотоническое сокращение, т.к. при выполнении двигательных действий внешняя нагрузка на сокращающиеся мышцы не остается постоянной вследствие изменения механических условий их работы, т.е. изменения плеч сил и углов их приложения. Смешанную форму сокращения, при которой изменяется как длина, так и напряжение мышцы, называют ауксотоническои или анизотонической.

Из книги Супертренинг автора Ментцер Майк

Новая техника тренинга – статические сокращения Бодибилдер – не пауэрлифтер. Поднимая штангу, он не собирается побивать весовой рекорд. Его задача – запустить механизма роста, т.е. добиться максимального сокращения мышечных волокон. Чтобы росла масса, надо наращивать

Из книги Фитнес-спорт: учебник для студентов автора Шипилина Инесса Александровна

ТИПЫ ТЕЛОСЛОЖЕНИЯ ГЕНЕТИКА Часто приходится слышать, что у спортсмена хорошая генетика, поэтому у него хорошие шансы добиться успеха. Что же такое генетика? Когда говорят «генетика мышцы», – имеют в виду ее форму. А форму определяют два важнейших фактора: расположение

Из книги Входные ворота ушу автора Яоцзя Чэнь

1. Типы шагов В «длинном» и «южном кулаке» есть такие общие типы шагов как лошадиный, лукообразный, пустой шаг и шаг слуги, а есть такие отличающиеся моменты, как отдыхающий шаг, сидячий охват. Т-образный шаг в «длинном кулаке» и шаг стоя на колене в «южном

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Сердечные сокращения Все перемещение крови в системе кровоснабжения происходят благодаря особому свойству сердечной мышцы - ритмичному сокращению ее волокон.Побуждением для сердечных сокращений являются непроизвольные и полностью автономные нервные импульсы; они

Из книги Триатлон. Олимпийская дистанция автора Сысоев Игорь

Тренировка мышечного компонента Допустим, что вы уже достаточно развили функциональные способности ССС и КРС, можете долго работать на высоком пульсе, у вас хороший уровень ПАНО, а МПК вышел на предельный генетический уровень. Но чего-то не хватает. Часто бывает, что

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

2.4 ХАРАКТЕРИСТИЧЕСКИЕ КРИВЫЕ МЫШЦ. 2.4.1 Взаимосвязь между нагрузкой и скоростью мышечного сокращения. Характеристическую зависимость «нагрузка - скорость» (рисунок 2.2) называют кривой Хилла в честь изучавшего её английского физиолога Хилла, исследовавшего сокращение

Из книги Формула-1. История главной автогонки мира и её руководителя Берни Экклстоуна автора Бауэр Том

2.5.2 Регуляция мышечного напряжения. Для регуляции мышечного напряжения используются три механизма: регуляция числа активных двигательных единиц данной мышцы, регуляция частоты подачи нервных импульсов, регуляция временно?й связи активности двигательных

Из книги Школа яхтенного рулевого автора Григорьев Николай Владимирович

7.2.2 Механизм мышечного сокращения. В соответствии с теорией скользящих нитей мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах, при этом тонкие актиновые нити скользят вдоль толстых миозиновых, двигаясь между

Из книги Аюрведа и йога для женщин автора Варма Джульет

Из книги Рукопашный бой [Самоучитель] автора Захаров Евгений Николаевич

Типы парусных яхт В практике парусного спорта используются яхты самых различных видов и размеров. В зависимости от условий плавания в том или ином районе применяют большие или меньшие яхты той или иной конструкции. Тип яхты в первую очередь определяется ее назначением и

Из книги Всё о лошадях [Полное руководство по правильному уходу, кормлению, содержанию, выездке] автора Скрипник Игорь

Из книги Пробиотики и ферменты. Суперфуд XXI века автора Кайрос Наталия

Из книги Жизнь без боли в спине. Лечение сколиоза, остеопороза, остеохондроза, межпозвонковой грыжи без операции автора Григорьев Валентин Юрьевич

Типы рационов Ниже приведена краткая характеристика питательных веществ, входящих в состав готовых рационов, поступающих в продажу (табл.

Из книги Следствие ведут едоки автора Буренина Кира

Глава 6. Типы пищеварения Во время написания этой главы я неоднократно обращалась к справочной литературе, но, признаться, чем глубже вникала в суть проблемы, тем больше противоречий находила в описаниях пищеварительных процессов. Полагаю, что такое положение дел связано

Из книги автора

Упражнения для укрепления мышечного корсета позвоночника на ранних стадиях спондилеза При шейной локализации спондилеза как можно шире следует использовать изометрические упражнения, описанные в разделе лечения шейного остеохондроза. Не рекомендуется выполнять

Актуальность темы (мотивация). У человека различают три вида мышц: поперечно-полосатые (исчерченные) скелетные мышцы, поперечно-полосатая (исчерченная) мышца сердца и гладкие (неисчерченные) мышцы внутренних органов, кожи и сосудов.

Специфическим ответом мышцы на раздражение является сокращение. В зависимости от структуры мышцы сокращаются по-разному, быстро, фазнотетанически (скелетная мускулатура), одиночно (сердечная мышца), тонически (гладкая и скелетная мышцы).

В организме возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. В результате сократительной деятельности скелетных мышц, происходящей под влиянием импульсов, приходящих из ЦНС, возможны: передвижение организма в пространстве, перемещение частей тела относительно друг друга, поддержание позы, выработка тепла и т.д.

При перерезке нервов наступает паралич мышц, при длительной фиксации и бездействии – атрофия и контрактура. Чем больше функционирует мышца, тем лучше ее кровоснабжение и больше сила, связанная с мышечной массой.

Дидактические (учебные) цели:

Дать представление о функциях, физиологических свойствах мышц, механизмах, видах и режимах мышечных сокращений, двигательных единицах, явлении утомления мышц;

Дать представление о биоэлектрических, химических, тепловых процессах в мышцах;

Ознакомить с методами оценки функционального состояния мышц;

· Студент должен знать:

Физиологические и физические свойства скелетной мышцы;

Механизм мышечного сокращения и расслабления;

Виды и режимы мышечных сокращений;

Методы изучения функционального состояния мышц;

Оптимум и пессимум силы и частоты раздражения.

· Студент должен уметь:

Записать одиночное мышечное сокращение, зубчатый и гладкий тетанус;

Получить в опыте реакцию скелетной мышцы на раздражители нарастающей силы – оптимум и пессимум Введенского;

Определить силу мышц кисти у человека до и после физической нагрузки методом динамометрии.

Вопросы для самоподготовки

I. Вопросы по базисным знаниям

1. Виды мышечной ткани.

2. Особенности строения гладких мышц.

3. Строение поперечнополосатой мышечной ткани.

4. Мышечная сила.

II. Вопросы по теме занятия

1. Функции мышц. Виды мышечной ткани. Двигательные единицы.

2. Физиологические и физические свойства мышц.

3. Механизм мышечных сокращений.

4. Тепловые процессы в мышцах

5. Виды и режимы мышечных сокращений. Суммация сокращений. Тетанус. Виды тетануса.

6. Тонус мышц.

7. Оптимум и пессимум силы и частоты раздражения.

8. Теория утомления изолированной мышцы и целого организма.

III. Профильные вопросы

· Специальность: «Лечебное дело»

1. Функции и физиологические особенности гладких мышц.

· Специальность: «Педиатрия»

2. Особенности мышечных сокращений в раннем онтогенезе. Дифференциация моторных единиц на быстрые и медленные.

· Специальность: «Медико-профилактическое дело»

3. Электромиография, ее изменения при утомлении.

· Специальность: «Медико-биологическое дело»

4. Методы изучения механизма мышечных сокращений.

· Специальность: «Стоматология»

5. Функции мышц челюстно-лицевой области.

· Специальность: «Восточная медицина»

6. Оценка функционального состояния мышечной ткани у человека методами восточной медицины.

· Специальность: «Фармация»

7. Влияние миорелаксантов на скелетные мышцы.

IV. Вопросы для самоконтроля

1. Физиологические и физические свойства мышц.

2. Механизм мышечного сокращения.

3. Виды и режимы мышечных сокращений

4. Гипертрофия и атрофия мышц.

Краткое содержание темы

(по вопросам для самоподготовки)

Функции мышц. Виды мышечной ткани. Двигательные единицы. Перемещение тела в пространстве и отдельных его частей, относительно друг друга, работа сердца, сосудов, пищеварительного тракта осуществляются у человека мышцами двух основных типов - поперечно-полосатыми (скелетные и сердечная) и гладкими. Скелетные мышцы являются составной частью опорно-двигательного аппарата человека. Сокращения скелетных мышц являются основным источником теплообразования в организме. Мышцы отличаются друг от друга клеточной и тканевой организацией, иннервацией, механизмами функционирования.

Скелетные мышцы человека состоят из нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками. В настоящее время выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические волокна с гликолитическим типом и тонические волокна.

Функциональной единицей скелетной мускулатуры является двигательная единица. Мотонейрон вместе с группой иннервируемых им мышечных волокон называется двигательной единицей.

В скелетных мышцах теплокровных животных и человека различают быстрые и медленные двигательные единицы, состоящие соответственно из быстрых и медленных мышечных волокон. Длительность сокращения медленных двигательных единиц может быть 100 мс и более, быстрых от 10 до 30 мс. Большинство мышц смешанные, состоят как из быстрых, так и из медленных двигательных единиц, а также переходных форм между ними.

Медленные двигательные единицы, как правило, содержат меньше мышечных волокон и, следовательно, при сокращении развивают меньшую силу. Медленные двигательные единицы могут работать без утомления гораздо дольше, чем быстрые, что объясняется особенностями их обмена. При естественном напряжении мышцы мотонейроны медленных двигательных единиц обычно оказываются более низкопороговыми, т.е. вовлекаются в возбуждение раньше.

Разница в возбудимости мотонейронов позволяет нервной системе дозировать силу сокращения, вовлекая в возбуждение меньшее или большее количество двигательных единиц мышцы.

Физиологические и физические свойства мышц. К физическим свойствам скелетных мышц относятся: растяжимость, эластичность, сила мышц, работа мышц.

Растяжимость – это способность мышц под воздействием груза увеличивать длину.

Эластичность - это способность мышц после растяжения принимать исходное положение.

Сила мышц определяется либо максимальным грузом, который она в состоянии поднять, либо максимальным напряжением, которое она может развить в условиях изометрического сокращения. Сила мышц определяется сократительной способностью мышечных волокон.

Сила мышцы при прочих равных условиях зависит от ее поперечного сечения, т.е.чем больше физиологическое поперечное сечение мышцы, тем больший груз она в состоянии поднять. Физиологическое поперечное сечение совпадает с геометрическим только в мышцах с продольно расположенными волокнами; у мышц с косым расположением волокон сумма поперечных сечений может значительно превышать геометрическое поперечное сечение самой мышцы. Силы мышцы с косо расположенными волокнами значительно больше, чем сила мышцы той же толщины, но при продольном расположении волокон.

Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно уменьшается. При очень большом грузе, который мышца не способна поднять, работа становится равной нулю. Наибольшую работу мышца совершает при некоторых средних нагрузках.

Мощность мышцы, измеряемая величиной работы в единицу времени, достигает максимальной величины при средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила средних нагрузок.

К физиологическим свойствам скелетных мышц относят возбудимость, проводимость, сократимость, лабильность.

Возбудимость – способность мышцы переходить из состояния покоя в состояние возбуждения при действии раздражителя. Возбудимость мышечной ткани меньше, чем нервной.

Проводимость – способность проводить потенциал дейст­вия вдоль и в глубь мышечного волокна по Т-системе.

Сократимость – способность укорачиваться или разви­вать напряжение при возбуждении.

Лабильность – способность воспроизводить максимальную частоту возбуждения в ритме с раздражением в единицу времени, с.

Механизм мышечных сокращений. Мышцы состоят из мышечных волокон. Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей митохондрии, саркоплазматическую сеть, Т –систему, специализированный сократительный аппарат, представленный множеством нитей миофибрилл, расположенных продольно. Каждая миофибрилла состоит из нитей сократительных белков - актина и миозина.Перегородки (Z-пластины) разделяют миофибриллы на участки – саркомеры.

Саркомер – функциональная единица сократительного аппарата. В саркомере чередуются поперечные светлые и темные полосы. Электронно-микроскопическими исследованиями было установлено, что поперечная исчерченность миофибрилл обусловлена определенным расположением нитей актина, миозина, тропонина, тропомиозина. В центральной части каждого саркомера расположены толстые нити миозина. На обоих концах саркомера находятся тонкие нити актина, прикрепленные к Z–пластинам.

В состоянии покоя концы толстых и тонких нитей лишь незначительно перекрываются на уровне анизотропных - А-дисков. В центре А-диска видна более светлая Н- полоска, в состоянии покоя в ней нет нитей актина. По обе стороны А-дисков видны светлые изотропные I-диски, образованные только нитями актина.

Миозиновые нити имеют поперечные мостики (выступы) с головками, которые отходят от нитей биполярно.

На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина. Молекулы тропомиозина в покое располагаются так, что предотвращают прикрепления поперечных мостиков миозина к актиновым нитям. В состоянии покоя миозин не может соединяться с нитью актина, так как между ними находится система из нитей тропомиозина и молекул тропонина.

С появлением ионов кальция в присутствии АТФ происходит изменение пространственного положения тропонина, нить тропомиозина сдвигается и открываются участки актина, присоединяющие миозиновые головки. Тонкие актиновые нити скользят вдоль толстых миозиновых нитей, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити своей длины не изменяют (рисунок 7).

Соединение головки фосфорилированного миозина с актином приводит к изменению положения мостика- его «сгибанию», в результате, нити актина перемещаются к середине саркомера. Изменяется область взаимного перекрытия актиновых и миозиновых нитей. Ритмические прикрепления и отсоединения головок миозина тянут актиновую нить к середине саркомера.

Таким образом, согласно теории скольжения нитей H. Huxley и A. Huxley, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых, что приводит к развитию напряжения и укорочению мышечного волокна.

При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из межфибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина.

Вследствие этого, тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Затем происходит фосфорилирование миозина за счет АТФ, что также способствует временному разобщению нитей.

Расслабление мышцы после сокращения происходит пассивно. Актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон, а также сокращения мышц-антагонистов.

Рисунок 7. Механизм мышечного сокращения

а- мышечное волокно в состоянии покоя;

б - мышечное волокно во время сокращения

1- поверхность мембраны, 2-поперечные трубочки, 3 - боковые цистерны саркоплазматического ретикулума мышечного волокна, 4 - продольные трубочки саркоплазматического ретикулума мышечного волокна, 5 - миофибриллы мышечного волокна, Z – мембрана, разделяющая саркомеры

Возбуждение тонических волокон имеет характер локального ответа, поэтому ограничивается областью нервно-мышечного окончания или тем участком, к которому непосредственно приложено электрическое или химическое раздражение. Охват возбуждением всего волокна возможен потому, что на каждом волокне имеется не одно, а множество нервных окончаний. Одновременное поступление к этим окончаниям нервного импульса вызывает сокращение всего волокна. Это сокращение существенно медленнее, чем сокращение фазных мышечных волокон.

Тепловые процессы в мышцах. Фаза начального теплообразования начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая фазу расслабления.

Начальное теплообразование может быть разделено: а) тепло активации ; б) тепло укорочения ; в) тепло расслабления .

Тепло активацииосвобождается непосредственно после нанесения раздражения, но до сколь-нибудь различимого сокращения мышечных волокон. Поэтому указанная порция тепла рассматривается как тепловой эффект тех химических процессов, которые переводят мышцу из невозбужденного состояния в активное. При тетаническом сокращении тепло активации выделяется в течение всего времени раздражения мышцы при каждом потенциале действия.

Тепло укороченияобусловлено самим сократительным процессом. Если путем сильного растяжения мышцы воспрепятствовать ее сокращению, эта порция тепла не выделяется.

Тепло расслаблениясвязано с освобождением энергии в результате расслабления мышцы. Если мышца подняла груз во время сокращения, то по окончании его количество выделяемого тепла увеличивается.

Вторая фаза теплопродукции длится несколько минут после расслабления и носит название запаздывающего, или восстановительного, теплообразования. Она связана с химическими процессами, обеспечивающими ресинтез АТФ.

Виды и режимы мышечных сокращений. Суммация сокращений. Тетанус. Виды тетануса. При раздражении самой мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы: а) латентный период (от начала раздражения до начала ответной реакции), б) фазу укорочения (собственно сокращение), в) фазу расслабления.

В естественных условиях к мышцам поступают не одиночные импульсы, а серии импульсов, на которые мышца отвечает длительным сокращением. Сокращение мышцы в ответ на ритмическое раздражение получило название тетанического сокращения, или тетануса. Различают зубчатый и гладкий тетанус.

Если каждый последующий импульс тока приходит к мышце в период, когда она начала расслабляться, возникает зубчатый, или несовершенный, тетанус. Если интервал между раздражениями уменьшается так, что каждый последующий импульс приходит к мышце в тот момент, когда она находится в фазе сокращения, возникает гладкий, или совершенный, тетанус.

Мышца может сокращаться в различных режимах. Различают изотонический, изометрический и ауксотонический режимы мышечного сокращения.

При изотоническом режиме сокращения мышцы происходит укорочение ее волокон, но напряжение остается постоянным. Такое сокращение мышцы можно получить, если ей при сокращении не приходится перемещать груз. В естественных условиях сокращения мышцы языка являются близкими к изотоническому режиму сокращения.

При изометрическом режиме сокращения длина мышечных волокон остается постоянной, Например, мышца укоротиться не может, например, когда оба ее конца неподвижно закреплены, а напряжение их изменяется. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническими или часто изометрическими, а всегда происходит изменение длины и напряжения мышцы. Такой режим сокращения называется ауксотоническим.

Тонус мышц. В естественных условиях мышцы редко бывают полностью расслабленными. Обычно в них наблюдается небольшая, так называемая позная активность, или позный тонус.

Тонус и особенно его нарушения при ряде заболеваний нервной системы связаны с изменением состояния рефлекторных механизмов, в частности рефлексов с проприорецепторов мышц, повышение возбудимости которых ведет к повышению тонуса.

Оптимум и пессимум силы и частоты раздражения. Н.Е. Введенским было показано, что при действии на мышцу ритмических раздражений амплитуда тетанического сокращения будет различной, она будет зависеть от частоты наносимых раздражений (рисунок 8).

Рисунок 8. Оптимум и пессимум (по Н.Е. Введенскому)

При действии на мышцу ритмических раздражений, каждое предыдущее раздражение приводит к изменению возбудимости мышцы и поэтому влияет на величину последующей ответной реакции. Существуют определенные оптимальные значения частоты и силы раздражения, при которых возникает тетанус максимальной амплитуды. Их называют оптимумом частоты и силы раздражения. При значительном увеличении силы и частоты раздражения амплитуды тетануса уменьшается – это пессимум частоты и силы раздражения.

Теория утомления изолированной мышцы и целого организма. Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

При утомлении нарастает латентный период сокращения и удлиняется период расслабления мышцы. Однако все эти изменения возникают не тотчас после начала работы, а спустя некоторое время. При дальнейшем длительном раздражении развивается утомление мышечных волокон.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон.

Другая причина развития утомления изолированной мышцы – постепенное истощение в ней энергетических запасов. Утомление изолированной скелетной мышцы при ее прямом раздражении является лабораторным феноменом.

В целом организме утомление зависит не только от процессов в мышце, но и от процессов, развивающихся в нервной системе, участвующих в управлении двигательной деятельностью.

Особенности мышечных сокращений в раннем онтогенезе. Дифференциация моторных единиц на быстрые и медленные. Становление сократительных свойств скелетных мышц происходит в периоде внутриутробного развития и продолжается длительное время после рождения. Особенностью мышц плода и новорожденных является медленность одиночных сокращений мышц – как фазы укорочения, так и фазы расслабления. Кроме того, у новорожденных, как правило, отсутствуют различия скорости сокращения будущих быстрых и медленных мышц, хотя сами мышцы уже различаются по цвету (белые и красные) и по гистохимическим признакам.

Начальная дифференцировка мышечных волокон на быстрые и медленные происходит во второй половине внутриутробного развития. После рождения наблюдается ускорение сокращений не только быстрых, но и медленных волокон. У медленных волокон, в дальнейшем, происходит вторичное замедление сокращений. Однако скорость сокращения медленных мышц у взрослых гораздо больше, чем у мышц плода.

Ускорение сокращений мышц в ходе развития обусловлено двумя факторами: ускорением, обусловленным интенсификацией активации мышечных белков, и ускорением, вследствие увеличения количества саркомеров, последовательно расположенных по длине миофибрилл.


Задание для самостоятельной работы студентов на практическом занятии

Работа 1. Запись и анализ одиночного мышечного сокращения

Цель работы: научиться проводить запись одиночных сокращений мышцы нервно-мышечного препарата, научиться анализу одиночных сокращений.

Ход работы. Препарат икроножной мышцы лягушки укрепляют в вертикальном миографе. Рычажок миографа в горизонтальном положении. С помощью потенциометра подбирают такую силу раздражения, на которую мышца развивает достаточно сильное сокращение. Под кривой одиночного мышечного сокращения записывается отметка времени. Для вычисления продолжительности фаз одиночного мышечного сокращения с определенных точек кривой мышечного сокращения опускают перпендикулярно на отметку времени.

Результаты работы и её оформление: кривую одиночного мышечного сокращения зарисуйте в тетрадь, обозначив фазы сокращения и расслабления, и их длительность.

Выводы: сделайте вывод о длительности одиночного сокращения икроножной мышцы лягушки.

Работа 3 .Запись оптимума и пессимума силы и частоты раздражений

Цель работы: научиться проводить запись оптимума и пессимума силы и частоты раздражений.

Для работы необходимы: лягушка, инструменты для препарования, салфетки, препаровальный столик, 0,65 % раствор NaCl, вертикальный миограф, электростимулятор, кимограф, чернила, секундомер, пипетка.

Ход работы. Препарата икроножной мышцы лягушки укрепляют в миографе, который соединен со стимулятором, приближают писчик миографа к кимографу. Находят величину стимула, вызывающего максимальное одиночное сокращение мышцы. Затем находят оптимальную частоту, которая вызывает возникновение гладкого тетануса максимальной амплитуды. Затем резко увеличивают частоту и силу раздражения, не прекращая запись миограммы. Амплитуда сокращения резко снижается. Это будет пессимум частоты и силы раздражения.

Результаты работы и ее оформление: кимограммы зарисуйте в тетради, объясните механизм оптимума и пессимума.

Выводы: проанализируйте результаты, обратив внимание на критические изменения частоты раздражения, когда кривые переходят из оптимума в пессимум.

Работа 4 . Определение силы мышц кисти у человека до и после физической нагрузки методом динамометрии

Цель работы: научиться определять силу мышц кисти у человека с помощью динамометра.

Для работы необходимы: кистевой динамометр, объект исследования - человек.

Ход работы. Измерьте силу мышц кисти левой и правой руки динамометром. Затем сделайте 15 – 20 отжиманий на руках. Снова измерьте силу мышц кисти правой и левой руки динамометром.

Результаты работы и ее оформление: результаты измерения занесите в протокол.

Выводы: сделайте выводы о силе мышц до и после физической нагрузки и объясните снижение силы мышц после физической нагрузки.

Работа 5. Исследование максимального мышечного усилия и силовую выносливость мышц кисти методом динамометрии

Цель работы: научиться определять максимальное мышечное усилие и силовую выносливость мышц кисти методом динамометрии.

Для работы необходимо: кистевой динамометр, объект исследования - человек.

Ход работы. Испытуемый в положении стоя отводит вытянутую руку с динамометром в сторону под прямым углом к туловищу. Вторая, свободная рука опущена и расслаблена. По сигналу экспериментатора испытуемый дважды выполняет максимальное усилие на динамометре. Силу мышц оценивают по лучшему результату. Затем испытуемый выполняет 10-кратные усилия с частотой 1 раз в 5 с. Результаты записывают и определяют уровень работоспособности мышц по формуле:

P = (f 1 + f 2 + f 3 + …+ f n)/ n,

где, Р – уровень работоспособности; f 1, f 2, f 3 и т.д. – показатели динамометра при отдельных мышечных усилиях; n – количество попыток.

Эти результаты используют для определения показателя снижения работоспособности мышц по формуле:

S = [(f 1 – f min) / f max ] · 100,

где, S – показатель снижения работоспособности мышц; f 1 – величина начального мышечного усилия; f min – минимальная величина усилия; f max – максимальная величина усилия.

Результаты работы и их оформление: начертите график, который выявит характер снижения работоспособности мышц: на оси абсцисс отложите порядковые номера усилий, на оси ординат – показатели динамометра при каждом усилии.

Выводы: объясните полученные результаты.

Работа 6.Работа мышцы при различных нагрузках методом эргографии

Цель работы: научиться определять работу мышцы при различных нагрузках методом эргографии.

Для работы необходимо: эргограф, электрометроном, набор грузов, объект исследования - человек.

Ход работы. Испытуемый садится на стул рядом со столом, на котором установлен эргограф. Предплечье испытуемого закрепляют в эргографе между опорной полукруглой планкой, куда опирается локоть, и вертикальной стойкой, которую охватывают кисть руки. Вертикальные стойки с двух сторон ограничивают боковые движения предплечья. На указательный палец надевают кольцо, которое тонким тросом через каретку с писчиком и блок связано с грузом массой от 1,5 до 3 кг. Включают метроном с частотой 60 сигналов/мин и рекомендуют испытуемому поднимать груз, т.е. сгибать и разгибать указательный палец в ритме метронома, пытаясь сохранить как можно дольше максимальную амплитуду движений. Работу продолжают до полного утомления, т.е. до момента, когда мышцы пальца перестают сокращаться.

По формуле А = РН вычисляют величину работы в джоулях, где Р – масса груза, Н – суммарная высота подъема, вычисляемая по эргограмме. Затем определяют длительность работы.

Результаты работы и их оформление: результаты записей занесите в протокол.

Инструкция к оформлению работ

1. Название работы.

2. Цель работы.

3. Для работы необходимо.

4. Ход работы.

5. Результаты с рисунками и анализом полученных результатов.

6. Выводы с использованием атласа, практикумов, руководств к практическим занятиям, учебных пособий по физиологии.


Вопросы для контроля

I. Ситуационные задачи

1. При раздражении нерва нервно-мышечного препарата мышца доведена до утомления. Что произойдет, если в это время подключить прямое раздражение мышцы?

Ответ. Мышца снова начинает сокращаться, т.к. при раздражении нервно-мышечного препарата утомление раньше всего наступает в синапсе.

2. Мышца сокращается тетанически. Как изменится ритм ее сокращения, если в перфузируемый раствор ввести атропин?

Ответ. Мышца расслабится, т.к. атропин блокирует передачу импульсов в холинергических синапсах.

3. Площадь физиологического поперечного сечения мышцы 25 см 2 . Рассчитайте удельную силу мышцы, если она в состоянии поднять 200 кг?

Ответ. Удельная сила равна отношению максимального груза к площади поперечного сечения. В данном случае она равна 8 кг/см 2 .

4. Длительность рефрактерности мышцы 10 мсек. Длительность одиночного сокращения 200 мс. Назовите интервал частот раздражения, при которых данная мышца будет сокращаться в режиме гладкого тетануса.

Ответ. Для гладкого тетанического сокращения необходимо, чтобы интервал между раздражениями был длиннее рефрактерного периода, но короче всей длительности сокращения, который равен примерно 1/3 всего времени одиночного сокращения (т.е. времени сокращения и расслабления. В данном случае этот интервал лежит в пределах от 10 до 70 мс, значит при частоте от 15 – 100 Герц будет наблюдаться тетанус. При меньшей частоте будут одиночные сокращения, при большей – пессимум.

5. В эксперименте на нервно-мышечном препарате было определено, что при неизменной силе тока пессимум наступает при частоте 150 Гц. При какой частоте раздражения можно получить на этом препарате состояние оптимума. Какова лабильность нервно-мышечных синапсов данного препарата?

Ответ. При частоте немного меньшей 150 Гц. Лабильность синапса 149 Гц т.к. это максимальная частота, которую воспроизвел нервно-мышечный препарат.

6. Схема какого процесса приведена ниже? Добавьте недостающие звенья, раздражения ____ возникновенья потенциала действия ____ проведение его вдоль клеточной мембраны и вглубь волокна по Т-системам____? Взаимодействие актина и миозина____?____ активации Са насоса ____? ____ расслабление мышцы?

Ответ. Приведена схема электро-механического сопряжения (ЭМС). Раздражение, возникновение потенциала действия, проведение его вдоль клеточной мембраны и вглубь волокна по Т-системам, освобождение Са ++ из саркоплазматического ретикулума, взаимодействие актина и миозина, сокращение мышечного волокна ____ активация Са ++ - насоса___возвращение Са ++ в цистероны ретикулума ____ расслабление мышцы.

7. Величина МП мышечного волокна уменьшилась. Станет ли при этом разница между возбудимостью этого волокна и иннервирующего его нервного волокна больше или меньше?

Ответ. При уменьшении МП мышечного волокна его пороговый потенциал тоже уменьшится и, следовательно, уровень возбудимости повысится.

8. К покоящейся мышце подвесили груз. Как при этом изменится ширина Н-зоны саркомера?

Ответ. При растяжении мышцы степень перекрытия миозиновых нитей уменьшается, так как актионовые нити частично выходят из промежутков между миозиновыми нитями. Соответственно ширина Н-зоны увеличивается.

9. Совпадает ли физическое и физиологическое понятия работы мышц?

Ответ. Нет, не всегда совпадают. В физическом смысле механическая работа измеряется произведением силы на расстояние. В случае изотонического сокращения мышца действительно перемещает какой-то груз на некоторое расстояние. Однако, при изометрическом сокращении (например, при попытке поднять непосильный груз) укорочения мышцы не происходит. Значит, в физическом смысле механическая работа равна нулю. Тем не менее, в мышце затрачивается энергия, которая идет на развитие напряжения в мышечных волокнах. Следовательно, в физиологическом смысле работа совершается.

10. Почему быстрые мышцы при сокращении потребляются в единицу времени больше энергии АТФ, чем медленные?

Ответ. Основное отличие быстрых мышц от медленных состоит в том, что они укорачиваются более быстро. При быстром сокращении мостики совершают больше гребковых движений в единицу времени, и на это затрачивается больше энергии.

I I. Тестовые вопросы

Инструкция. Для каждого вопроса дается 5 ответов. Выберите один наиболее правильный ответ или утверждение.

1. Продолжительность одиночного сокращения икроножной мышцы

лягушки равна

2. Силу мышечных сокращений можно определить с помощью

а) миографа

б) хронаксиметра

в) импульсатора

г) осциллографа

д) динамометра

3. Утомление целого организма (по Сеченову) наступает при

а) уменьшении количества глюкозы в крови

б) увеличении продуктов метаболизма

в) снижении кислородной емкости крови

г) нарушении проводимости по нервным волокнам

д) снижении синаптической передачи в нервных центрах

4. В целом организме к одиночному сокращению способна мышца

а) гладкая

б) сердечная

в) скелетная

г) сосудов

д) бронхов

5. Латентный период одиночного сокращения икроножной мышцы лягушки равен

6. При длительном раздражении и напряжении работоспособность мышц уменьшается из-за

а) повышения возбуждения в нервных центрах

б) явления утомления

в) увеличения периода рефрактерности

г) изменения лабильности нервов

д) явления возбуждения

7. Оптимум частоты раздражения при непрямом раздражении мышцы лягушки

д) 120-130 Гц

8. Продолжительность фазы расслабления одиночного сокращения икроножной мышцы лягушки равна

9. Продолжительность фазы укорочения одиночного сокращения икроножной мышцы лягушки равна

10. Утомление мышц можно изучать приборам

а) эргографом

б) осциллографом

в) расходометром

г) пневмографом

д) импульсатором

11. Активной частью опорно-двигательного аппарата являются

а) поперечно-полосатые скелетные мышцы

б) гладкие мышцы желудка

в) гладкие мышцы сосудов

г) гладкие мышцы кишечника

д) поперечно-полосатая сердечная мышца

12. Наибольшую работу мышца совершает при нагрузках

а) минимальных

б) максимальных

в) средних

г) пороговых

д) подпороговых

13. Способность гладких мышц сохранять приданную им при растяжении длину называют

а) растяжимостью

б) проводимостью

в) автоматией

г) лабильностью

д) пластичностью

14. Физиологическим свойством скелетных мышц не является

а) возбудимость

б) автоматия

в) проводимость

г) раздражимость

д) лабильностью

15. Способность мышцы увеличивать длину под действием силы называют

а) возбудимостью

б) растяжимостью

в) проводимостью

г) эластичностью

д) автоматией

16. В одиночном мышечном сокращении время от начала действия раздражителя до начала ответной реакции называют

а) латентным периодом

б) периодом рефрактерности

в) периодом супернормальности

г) лабильностью

д) периодом субнормальности

17. Способность мышц возбуждаться при действии раздражителей называют

а) проводимостью

б) сократимостью

в) возбудимостью

г) эластичностью

д) растяжимостью

18. Максимальный груз, который мышца может поднять, определяет ее

б) проводимость

в) лабильность

г) рефрактерность

д) автоматию

19. При одиночном сокращении изменение длины мышцы происходит в

а) латентном периоде

б) фазе субнормальности

в) фазе расслабления

г) фазе экзальтации

д) фазе укорочения

20. При изотоническом сокращении мышцы происходит изменение ее

а) напряжения

б) проводимости

г) лабильности

д) рефрактерности

21. Миофибриллы состоят из сократительных белков

а) альбуминов, глобулинов

б) муцинов, альбуминов

в) фибриногена, протромбина

г) глобулинов, авидина

д) актина, миозина

22. Нити миозина в саркомере расположены

а) в центральной части

б) на одном из концов саркомера

в) на обоих концах саркомера

г) у Z-пластин

д) в I -дисках

23. Перегородку, разделяющую миофибриллы на участки (саркомеры), называют

а) Z-пластиной

б) I-диском

в) Н-зоной

г) темным диском

д) А-диском

24. Скольжение актиновых нитей вдоль миозиновых нитей к середине саркомера происходит в фазу

а) расслабления мышцы

б) сокращения мышцы

в) субнормальности

г) супернормальности

25. Соединению сократительных белков в мио


Возбуждение и сокращение мышц при естественных двигательных актах вызывается нервными импульсами, поступающими из центральной нервной системы.

Виды мышечных сокращений

Одиночное мышечное тетаническое тоническое

(миокард) (скелетные мышцы) (гладкие мышцы)

Гладкий зубчатый

оптимальный

пессимальный

Скелетные мышцы в условиях опыта отвечают на одиночное раздражение одиночным сокращением. Однако в целом организме одиночные сокращения свойственны только сердечной мышце, которая сокращается в ответ на одиночные импульсы, поступающие к ней из синусного узла.

В зависимости от частоты импульсации мышца сокращается по-разному:

Для того чтобы понять механизм тетануса, необходимо изучить одиночное мышечное сокращение, которое является непременной составной единицей каждого их них.

Изучение одиночного мышечного сокращения можно провести, если записать его в развернутом виде, используя для этого быстро вращающийся кимограф (рис. 2.)

Рис. 2. Периоды одиночного мышечного сокращения.

I - латентный период - 0, 01 сек.

II - период укорочения - 0, 04 сек.

III - период расслабления - 0, 05 сек.

период сокращения мышцы - 0,1 сек.

В естественных условиях мышцы сокращаются под влиянием ритмических импульсов, получаемых из ЦНС. Импульсы следуют с частотой большей, чем период одиночного мышечного сокращения, т.е. мышца, не успев расслабиться, получает следующий. В мышцах возникает явление суммации, в результате которого они приходят в состояние длительного укорочения, называемого тетанусом. Экспериментально тетанус можно получить на икроножной мышце лягушки при воздействии ритмического раздражителя.

При частоте, когда каждый последующий раздражитель попадает в фазу расслабления мышцы, получается зубчатый тетанус .

При частоте раздражения, когда каждый последующий импульс попадает в фазу укорочения мышцы, возникает длительное непрерывное сокращение, которое называется гладким тетанусом .

При возбуждении и сокращении мышцы изменяется ее возбудимость. Как только на мышцы подействовал пороговый раздражитель, в мышце возникло возбуждение, а возбудимость ее пропала, это будет абсолютная рефрактерная фаза, т. е. абсолютная невозбудимость и если в этот момент наносить дополнительные раздражения мышцы на них не будут отвечать, эта фаза длиться 0,001 - 0,003 секунды. Затем возбудимость постепенно восстанавливается и на новые дополнительные, более сильные раздражения мышцы отвечает слабым сокращением. Это относительно рефрактерная фаза, длиться она 0,009 - 0,007 секунды. Обе эти фазы укладываются в латентный период. После относительно рефрактерной фазы возбудимость в мышце не только восстанавливается, но и становиться значительно выше исходной - экзальтационная фаза - 0,018 секунды. Затем возбудимость возвращается к исходной величине.

Различают следующие режимы мышечных сокращений:

Изотоническое - сокращение, при котором происходит укорочение мышечных волокон, но их напряжение не меняется.

Изометрическое - сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает.

Ауксотоническое - сокращение, при котором изменяются и длина и напряжение мышц. Такой режим сокращения характерен для работающих мышц в целом организме. Первые два можно получить только в эксперименте.

Цель занятия: Сформировать четкое представление об основных свойствах мышечной ткани.

1. Изобразить синхронные графики возбуждения, возбудимости, одиночного мышечного сокращения:

а) поперечнополосатой

б) сердечной мышцы.

2. Объяснить, почему у поперечнополосатой мышцы основным видом сокращения является тетаническое, а у сердечной - одиночное.

3. Классифицировать виды и режимы сокращений мышечной ткани.

Вопросы для подготовки:

1. Сократительная функция мышечной клетки: биофизические, биохимические основы сокращения и расслабления.

2. Режимы сокращения мышц.

3. Что такое тетанус?

4. Какие виды тетануса различают? От чего зависит вид тетануса?

5. Почему амплитуда тетанического сокращения больше одиночного?

6. Особенности строения поперечнополосатых и гладких мышц.

7. У каких мышц более выражены эластические и пластические свойства?

Работа N 1. Запись и анализ одиночного и тетанического мышечного сокращения.

Цель работы:

1. Записать одиночное и тетаническое мышечное сокращение.

2. Изучить периоды одиночного мышечного сокращения.

3. Исследовать влияние частоты раздражений на характер сокращения мышцы.

Оборудование: препаровальный набор, кюветка с марлевой салфеткой, раствор Рингера, электростимулятор, кимограф, штатив с миографом.

Объект исследования: лягушка.

Ход работы.

Готовят мышечный препарат (бедренная кость с головкой и икроножная мышца с ахилловым сухожилием) из задней лапки лягушки и укрепляют его в штативе за миограф. Электростимулятор включают в сеть. Электроды направляют в мышцу, находят раздражитель пороговой величины. Миограф приближают к барабану кимографа, который поворачивают от руки и записывают кривую одиночного сокращения в развернутом виде.

Постепенно учащая ритм раздражения, записывают зубчатый, а затем гладкий тетанус.

Результат: Зарисовать или вклеить миограмму.

ЗАНЯТИЕ № 5.

ТЕМА: Физиологические свойства скелетных мышц. Работа и сила мышц.

Мышца, сокращаясь и поднимая груз, совершает внешнюю, полезную работу. Работу мышц вычисляют по формуле W=P∙h, где W работа мышцы, Р - вес груза, h - высота подъема груза. Работа мышцы с увеличением нагрузки в начале растет, достигает максимума, а затем уменьшается. Когда груз настолько велик, что мышцы не в состоянии его поднять при своем сокращении, полезная работа становится равной нулю. Сила мышцы не зависит от ее длины, но пропорциональна поперечному сечению. Под поперечным сечением понимается сумма всех поперечных сечений отдельных мышечных волокон. Различают относительную (максимальную) и абсолютную мышечную силу.

Цель занятия: Получить представление о работе и силе мышц.

Домашнее задание (письменно):

1. Сравнить строение, свойства поперечнополосатых и гладких мышц.

Работа № 1. Работамышцы при разных нагрузках, определение абсолютной и относительной силы мышцы.

Цель работы: Показать зависимость выполняемой работы от величины нагрузки.

Оборудование: препаровальный набор, кюветка с салфеткой, раствор Рингера, электростимулятор, штатив с миографом, грузики, линейка.

Объект исследования : лягушка.

Ход работы.

Готовят мышечный препарат и укрепляют его в вертикальном миографе. Собирают схему для раздражения электрическим током. Раздражение препарата прямое. Подбирают силу тока, которая вызывает максимальное сокращение мышцы. Запись мышечных сокращений производят на кимографе, барабан которого вращают рукой. Для удобства сравнения мышечные сокращения должны быть записаны на расстоянии, примерно, 0,5 -1 см. одно от другого.

Вначале наносят раздражения на мышцу без груза, записывают сокращение. Затем за нижний крючок миографа подвешивают небольшой груз и раздражают мышцу одиночными ударами электрического тока и записывают на барабане кимографа высоту мышечного сокращения. Затем постепенно увеличивая нагрузку и раздражая мышцу одной и той же силой тока, записывают ряд мышечных сокращений и находят тот груз, который мышца будит в состоянии только удержать - это будит максимальная (относительная) сила мышцы. Для определения абсолютной силы мышцы нужно найти площадь поперечного сечения данной мышцы. Для этого икроножную мышцу снимают с миографа и разрезают ее в самом широком месте пополам. Предположим, что мышца круглая, а площадь круга равна:

Отсюда, абсолютная сила мышцы равна частному делению максимальной силы на площадь поперечного сечения.

Определив силу мышцы, приступаем к вычислению работу. Для вычисления работы мышцы при разных нагрузках необходимо найти истинное укорочение мышцы, так как рычажок на кимографе записывает сокращение в увеличенном виде. Величина истинного укорочения во столько раз меньше, во сколько раз длина всего рычажка больше длины от оси вращения до места прикрепления груза.

На основании правил подобия треугольников определяют высоту истинного укорочения мышц.

Результат: Определяют абсолютную и относительную силу мышцы.

Вычисляют работу мышцы. Результат заносят в таблицу.

Вывод:

ЗАНЯТИЕ № 6.

ТЕМА: Утомление мышцы при работе. Теории мышечного утомления.

Утомление это временное понижение работоспособности мышцы, органа или всего организма в результате длительной работы и исчезающего после продолжительного отдыха. Утомление развивается с неодинаковой скоростью в различных возбудимых системах. В системе “нерв - мионевральный синапс - мышца” утомляется в первую очередь мионевральный синапс, как звено с самой низкой лабильностью. При утомлении возбудимость снижается и, наконец, наступает полная потеря возбудимости, приводящая к прекращению функции.

Цель занятия:

1. Сформировать представление о том, что такое утомление и почему оно возникает.

2. Рассмотреть основные теории развития утомления.

Домашнее задание (письменно):

1. Перечислить и дать краткую характеристику теориям мышечного утомления.

2. Объяснить, где и почему первоначально происходит утомление в системе “нерв - синапс - мышца”.

Вопросы для подготовки:

1. Как изменяется величина мышечного сокращения при постепенном увеличении нагрузки.

2. Что такое абсолютная и относительная сила мышцы. Как они определяются.

3. Что такое утомление?

4. Мионевральный синапс и его характеристика.

5. Понятие оптимума и пессимума частоты и силы действующего раздражителя.

РАБОТА № 1. Утомление мышц при работе. Локализация утомления в нервно-мышечном препарате.

Цель работы:

1. Показать зависимость развития утомления от ритма раздражения и величины нагрузки в целом организме и на изолированной мышце.

2.Установить, где первоначально в нервно-мышечный препарате возникает утомление.

Оборудование: препаровальный набор, кюветка с салфеткой, раствор Рингера, кимограф, штатив с миографом, грузики, электростимулятор, эргограф, динамометр.

Объект исследования: лягушка

Ход работы:

Влияние частоты раздражения. Готовят два мышечных препарата (один из них положить в кюветку с раствором Рингера, а один закрепить в штатив за миограф). Собирают установку для раздражения электрическим током. Электроды направляют под седалищный нерв. Находят порог возбудимости мышцы. Миограф приближают к барабану кимографа.

Мышцу раздражают с частотой в 1 Гц. На барабане кимографа записывают кривую утомления.

Заменяют мышечный препарат и опыт повторяют, увеличив частоту раздражений до 5 Гц. Определяют, сколько времени сокращалась эта мышца, работавшая в более частом ритме.

При анализе полученных кимограмм видно постепенное нарастание высоты сокращений, затем высота мышечных сокращений некоторое время остается на постоянном уровне. Развитие утомления характеризуется тем, что размах ее сокращений постепенно снижается, а расслабление остается неполным, развивается контрактура.

Влияние величины нагрузки: Готовят два препарата икроножной мышцы. Один из них кладут в чашку Петри и заливают раствором Рингера, а другой подвешивают на крючки миографа (условия опыта те же, что в первом случае). За нижний крючок миографа подвешивают грузик в 50 грамм. Мышцу раздражают с частотой 1Гц. Записывают кривую утомления.

Заменяют препарат, нагрузку увеличивают в два раза, и раздражение наносят с той же частотой. Записывают кривую утомления. При анализе данных кимограмм видно, что утомление развивается быстрее при увеличении нагрузки.

Локализация утомления в нервно-мышечном препарате. Готовят нервно-мышечный препарат. Собирают установку для раздражения одиночными ударами электрического тока. Раздражение нервно-мышечного препарата начинают с седалищного нерва - непрямое раздражение. Раздражение продолжать до тех пор пока икроножная мышца не перестанет сокращаться. Затем электроды переносят на мышцу - прямое раздражение, наносят удары электрическим током, при этом отмечают, что мышца вновь начинает сокращаться.

Вывод: Поскольку известно, что нерв практически не утомляем, то можно сделать заключение, что наблюдаемое ранее утомление мышцы при непрямом раздражении развивалось в мионевральном синапсе.


Мышцы (от слова «мышь» - из-за формы, поэтому ударение на первый слог) или мускулы (от лат. musculus - мышца (mus - мышка, маленькая мышь)) - органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.

Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Человек выполняет любые движения - от таких простейших, как моргание или улыбка, до тонких и энергичных, какие мы наблюдаем у ювелиров или спортсменов - благодаря способности мышечных тканей сокращаться. От исправной работы мышц, состоящих из трёх основных групп, зависит не только подвижность организма, но и функционирование всех физиологических процессов. А работой всех мышечных тканей управляет нервная система, которая обеспечивает их связь с головным и спинным мозгом и регулирует преобразование химической энергии в механическую.

В теле человека 640 мышц (в зависимости от метода подсчёта дифференцированных групп мышц их общее число определяют от 639 до 850). Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные - большие ягодичные мышцы, они приводят в движение ноги. Самые сильные мышцы - икроножные и жевательные, язык.

По форме мышцы очень разнообразны. Чаще всего встречаются веретенообразные мышцы, характерные для конечностей, и широкие мышцы - они образуют стенки туловища. Если у мышц общее сухожилие, а головок две или больше, то их называют двух-, трёх- или четырёхглавыми.

Мышцы и скелет определяют форму человеческого тела. Активный образ жизни, сбалансированное питание и занятие спортом способствуют развитию мышц и уменьшению объёма жировой ткани.

Режимы сокращения мышц

Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз) - она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом мышца укорачивается - меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза. Так как изотоническое сокращение не является " чисто" изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), а изометрическое сокращение тоже не является " чисто" изотоническим (элементы смещения все-таки есть, несомненно), то предложено употреблять термин " ауксотоническое сокращение" - смешанное по характеру.

Понятия " изотонический", " изометрический" важны для анализа сократительной активности изолированных мышц и для понимания биомеханики сердца.

Режимы сокращения гладких мышц. Целесообразно выделить изометрический и изотонический режимы (и, как промежуточный - ауксотонический). Например, когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость, выход для которой перекрыт сфинктером, то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры ГМК не меняются (жидкость не сжимается). Если это давление станет высоким и приведет к открытию сфинктера, то ГМК переходит в изотонический режим функционирования - происходит изгнание жидкости, т.е. размеры ГМК уменьшаются, а напряжение или сила - сохраняется постоянной и достаточной для изгнания жидкости.

Виды сокращений

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение, или тетанус. Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы. После короткого скрытого периода (латентный период) начинается процесс сокращения. При регистрации сократительной активности в изометрических условиях (два конца неподвижно закреплены) в первую фазу происходит нарастание напряжения (силы), а во вторую - ее падение до исходной величины. Соответственно эти фазы называют фазой напряжения и фазой расслабления. При регистрации сократительной активности в изотоническом режиме (например, в условиях обычной миографической записи) эти фазы будут называться соответственно фазой укорочения и фазой удлинения. В среднем сократительный цикл длится около 200 мс (мышцы лягушки) или 30-80 мс (у теплокровных). Если на мышцу действует серия прямых раздражении (минуя нерв) или непрямых раздражении (через нерв), но с большим интервалом, при котором всякое следующее раздражение попадает в период после окончания 2-й фазы, то мышца будет на каждый из этих раздражителей отвечать одиночным сокращением.

Суммированные сокращения возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем всякое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (расслабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).

Одиночное сокращение: А - потенциал действия; Б - сокращение мышцы; 1 - фаза напряжения; 2 - фаза расслабления

Суммированное сокращение: а - одиночное сокращение; б-г - зубчатый тетанус; д - гладкий тетанус

В случае, когда всякое второе раздражение попадает в период фазы расслабления (удлинения), возникает частичная суммация - сокращение еще полностью не закончилось, а уже возникло новое. Если подается много раздражителей с подобным интервалом, то возникает явление зубчатого тетануса. Если раздражители наносятся с меньшим интервалом и каждое последующее раздражение попадает в фазу укорочения, то возникает так называемый гладкий тетанус.


Поделиться