Для чего нужна мышцам атф. Биохимия физической работы

Энергия АТФ используется во время деятельности скелетной мыш­цы для 3-х процессов:

■ работы K + -Na + -насоса, обеспечивающего постоянство градиента концентраций ионов K + и Na + по обе стороны мембраны;

■ процесса скольжения актиновых и миозиновых нитей, ведущего к укорочению миофибрилл;

■ работы кальциевого насоса, необходимого для расслабления во­локна.

При работе мышц химическая энергия превращается в механиче­скую, т.е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и об­разованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн. Однако запасы АТФ в мышцах невелики (около 5 ммоль/л). Их хватает лишь на 1 - 2 с работы. Количество АТФ в мышцах не может изменяться, т.к. при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мыш­цы не в состоянии расслабляться), а при избытке - теряется эластичность.

Для продолжения работы требуется постоянное восполнение запа­сов АТФ. Восстановление АТФ происходит в анаэробных условиях - за счет распада креатинфосфата (КрФ) и глюкозы (реакции гликолиза), в аэробных условиях - за счет реакций окисления жиров и углеводов.

Быстрое восстановление АТФ происходит в тысячные доли секун­ды за счет распада КрФ: АДФ + КрФ = АТФ + Кр. Наибольшей эффектив­ности этот путь энергообразования достигает к 5 - 6-й секунде работы, но затем запасы КрФ исчерпываются, т.к. их также немного (около 30 ммоль/л).

Медленное восстановление АТФ в анаэробных условиях обеспечивается энергией расщепления глюкозы (выделяемой из гликогена) – реакцией гликолиза с образованием в конечном итоге молочной кислоты (лак-тата) и восстановлением двух молекул АТФ. Эта реакция достигает наибольшей мощности к концу 1- й минуты работы. Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 – 2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее мощной работы (финишные ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы. Ограничение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т.е. при аэробной работе длительностью более 2 – 3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечно-сосудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина поступления в организм кислорода за 1 мин - максимальное потребление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренированных лиц в 1 мин поступает к работающим мышцам около 2,5 – 3 л О 2 , а у высококвалифицированных спортсменов (лыжников, пловцов, бегунов-стайеров и др.) достигает 5 – 6 л и даже 7 л в 1 мин.

При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, т.к. для их окисления требуется гораздо меньше кислорода, чем при окислении жиров. При использовании одной молекулы глюкозы (С 6 Н 12 О 6), полученной из гликогена, образуется 38 молекул АТФ, т.е. аэробный путь энергообразования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молочная кислота в этих реакциях не накапливается, а промежуточный продукт – пировиноградная кислота – сразу окисляется до конечных продуктов обмена – СО 2 и Н 2 О.

В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50 % МПК) и при очень длительной работе на выносливость (требующей около 70 – 80 % МПК). Среди всех источников энергии жиры обладают наибольшей энергетической емкостью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ – око-ло 10,5 ккал, 1 моля глюкозы при анаэробном расщеплении – около 50 ккал, а при окислении 1 моля глюкозы в аэробных условиях – около 700 ккал, при окислении 1 моля жиров – 2 400 ккал. Однако использование жиров при работах высокой мощности лимитируется трудностью доставки кислорода работающим тканям.

Работа мышц сопровождается выделением тепла. Теплообразова-ние происходит в момент сокращения мышц – начальное теплообразование (оно составляет всего одну тысячную всех энерготрат) и в период восстановления – запаздывающее теплообразование.

В обычных условиях при работе мышц тепловые потери составляют около 80 % всех энерготрат. Для оценки эффективности механической работы мышцы используют вычисление коэффициента полезного действия (кпд). Величина кпд показывает, какая часть затрачиваемой энергии используется на выполнение механической работы мышцы. Ее вычисляют по формуле

кпд = [А: (Е - е)] · 100 %,

где А – энергия, затраченная на полезную работу;

Е – общий расход энергии;

е – расход энергии в состоянии покоя за время, равное длительности работы.

У нетренированного человека кпд примерно 20 %, у спортсмена – 30 – 35 %, т.е. мышца использует на движение 20 – 35 % химической энергии, остальная часть в форме тепла передается кровью другим тканям и равномерно согревает организм. Вот почему на холоде человек старается больше двигаться – подогревает себя энергией мышц. Мелкие непроизвольные сокращения мышц вызывают дрожь – организм увеличивает образование тепла.

При ходьбе наибольший кпд отмечается при скорости 3,6 – 4,8 км/ ч, при педалировании на велоэргометре – при длительности цикла около 1 сек. С увеличением мощности работы и включением «ненужных» мышц кпд уменьшается. При статической работе, поскольку А = 0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.

Трехглавая плеча


Наружная бедра


Камбаловидная

84 %

67 % -






Рис . 24. Состав мышечных волокон в разных мышцах :

медленные; ,.*>%" - быстрые

V<>-

Материалы для самостоятельной подготовки

Вопросы к коллоквиуму и для самоконтроля

1. Какие виды мышц у позвоночных животных и человека Вы знаете?

2. Назовите функции скелетных мышц.

3. Перечислите нейроны, иннервирующие скелетные мышцы.

4. Что является функциональной единицей мышцы?

5. Что входит в состав двигательной единицы (ДЕ)?

6. Что называют мотонейронным пулом?

7. Дать характеристику больших и малых ДЕ.

8. В чем заключается правило Хеннемана?

9. Опишите структуру мышечного волокна.

10. Как устроены миофибриллы?

11. Что такое саркомер?

12. Чем можно объяснить, что в состоянии покоя мышца имеет поперечнополо-сатый вид в световом микроскопе?

13. Опишите строение актиновых и миозиновых нитей.

14. Какова роль потенциала действия в возникновении мышечного сокращения?

15. Опишите механизм сокращения, расслабления мышечного волокна.

16. Кем была открыта ферментативная активность миозина?

17. Укажите последовательность событий, ведущих к сокращению, а затем рас-слаблению мышечного волокна.

18. В чем заключается роль АТФ в механизмах мышечного сокращения?

19. Перечислите фазы одиночного сокращения мышцы.

20. В каких случаях происходит суммация сокращений? Что такое тетанус?

21. Какие формы тетануса Вы знаете?

22. От чего зависит сокращение целой мышцы?

23. В чем заключается метод электромиографии?

24. От каких факторов зависит амплитуда ЭМГ?

25. Что такое сила мышцы и от каких морфологических и физиологических факторов она зависит?

26. Перечислите типы мышечных волокон. Дайте их характеристику.

27. Назовите режимы работы мышц.

28. Опишите энергетику мышечного сокращения.

International Association of Athletics Federations
Coaches Education and Certification System
Level II
Physiology of Energy
Production
September 2001
Unit 2.3

АТФ

Энергия АТФ
используется
для ВСЕХ
функций
организма,
а не только
для
физической
активности
Напряжение
мышц
Выработка
гормонов
Нервная
проводимость
Энергия
АТФ
Производство
новых
тканей
Восстановление
поврежденных
тканей
Adapted from de Castella &
Clews 1996
2 of 16
Переваривание
пищи
Physiology of Energy

АТФ - энергия

АТФ =
Аденозин
Pi
Pi
Энергия
Энергия
Pi
Структура молекулы АТФ
Аденозин
{
Pi
АТФ
Pi
Pi
}
Аденозин
{
Pi
АДФ
Pi
+
Pi
+
Энергия
}
Механизм реализации источника энергии
Adapted from Wilmore & Costill, 1994
Physiology of Energy
3 of 16

Physiology of Energy

Восстановление АТФ

АТФ в процессе мышечной деятельности
восстанавливается тремя путями:
Анаэробной алактатный механизм
Анаэробный лактатный (гликолитический)
механизм
Аэробный механизм
Physiology of Energy
4 of 16

Системы энергообеспечения

Все системы энергообеспечения работают
постоянно.
В зависимости от потребностей организма
для данного вида деятельности
(в соответствии с интенсивностью и
продолжительностью упражнения)
доля вклада той или иной системы в
общую энергопродукцию возрастает
Physiology of Energy
5 of 16

Системы
энергообеспечения
Аэробная
Анаэробная
T3 алактатная T2
Каналы
поступления
Анаэробная
лактатная
T1
Мышцы
Physiology of Energy
6 of 16

Вклад различных систем энергообеспечения

Анаэробная
алактатная
Анаэробная
лактатная
Аэробная
0
4
6
30
45
sec
Расход энергии при выполнении работы
5
min
Physiology of Energy
7 of 16

Анаэробная алактатная система

C
Pi
+
C
+
Pi
Энергия
+
+
АДФ
=
CP
+
Pi
АДФ
+
АТФ
Энергия
АТФ
+
C
Physiology of Energy
11 of 16

10.

Physiology of Energy

11. Анаэробная лактатная система

Углеводы
Отсутствие
кислорода
Молочная кислота
Анаэробный цикл
Кислород
Цикл Кребса и электрон-транспортная цепь
CO2 + Water
Аэробный цикл
Physiology of Energy
12 of 16

12. Аэробная система

46 30
sec
45
5
min
80
min
Physiology of Energy
13 of 16

13.

Показатели
кинетики
Креатинфосфо
киназная
реакция
Гликолиз
Максимальная
мощность
кДж/кг/мин
3,8
2,5
1,8
Быстрота
развертывания
процесса, с
1-2
30-50
60-90
Максимальная емкость
процесса, моль
ресинтезируемых
АТФ/ моль
окисляемого
вещества
1
2-3
38-39
Метаболическая
эффективность,%
80
35-50
55-60
Аэробное
окисление
углеводов
Physiology of Energy

14. Источники воспроизводства АТФ

Креатинфосфат
АТФ
Лактат
АДФ+ P
Гликоген
Энергия
Жир
Zintl.F. 1990
Белок
Physiology of Energy
8 of 16

15. Углеводы

Углеводы размещаются в организме
в виде гликогена, находясь
в мышцах или печени,
и транспортируются кровью
в виде глюкозы
Physiology of Energy
9 of 16

16. Источники энергии

Система
энергообеспечения
Анаэробная
алактатная
Источники энергии
Креатинфосфат
Оптимальная
длительность
выполняемой
работы
0 – 4 (10)
секунды
Анаэробная
лактатная
Углеводы
45 секунд –
3-5 минут
Аэробная
Углеводы
Жиры
2 – 3 часа
Physiology of Energy
10 of 16

17. Показатели скорости бега, уровня лактата и ЧСС на ступенях лыжероллерного задания "до отказа" у биатлонисток в зависимости от

Показатели скорости бега, уровня лактата и ЧСС на ступенях
лыжероллерного задания "до отказа" у биатлонисток в зависимости от
полиморфизма гена АКФ.
- - - - - DD генотип,
______ ID генотип
8,0
Лактат ммоль/л
7,0
6,5
DD
6,0
ID
5,5
5,0
4,5
4,0
1
2
3
4
DD
ID
1
5
2
3
4
5
Ступени задания
Ступени задания
195,0
185,0
ЧСС, уд/мин
Скорость, м/с
7,5
18,0
16,0
14,0
12,0
10,0
8,0
6,0
4,0
2,0
0,0
175,0
DD
165,0
ID
155,0
145,0
135,0
1
2
3
Ступени задания
4
5
Physiology of Energy

18. Энергоресурсы организма

Жиры
CH
(357g)
(7961g)
Количество
1g Fat
1g CH
4 kcal
Energy
9 kcal
Energy
Использование
Physiology of Energy
14 of 16

19. Аэробная система

Окисление жиров требует на 10%
больше кислорода, чем окисление
углеводов при одинаковой
энергопродукции
Physiology of Energy
15 of 16

20. Использование источников энергии

Жиры
= количество =
+
O2
Энергия
Углеводы
+
> на 10%
= количество =
o2
Энергия
Physiology of Energy
16 of 16

21.

Соотношение белых и красных мышечных
волокон
Physiology of Energy

22.

Physiology of Energy

23.

Кислородный запрос (О2 запрос) - это
количество кислорода, необходимое для
энергообеспечения мышечной деятельности
спортсмена.
Кислородное потребление (О2 потребление)
- фактическое потребление кислорода во
время работы.
Кислородный дефицит (О2 дефицит) - это
часть кислородного запроса, не
удовлетворяемого во время работы.
Кислородный долг (02 долг) - количество
кислорода, потребляемое организмом сверх
нормы покоя во время отдыха. Physiology of Energy

24.

Physiology of Energy

25.

Алактатный компонент О2долга связан с
повышенным потреблением кислорода во
время отдыха для восстановления содержания
КФ и баланса АТФ, насыщения кислородом
гемоглобина, миоглобина, плазмы крови и
биологических жидкостей. Этот компонент
О2долга невелик и ликвидируется в течение
первых 35 мин отдыха.
Лактатный компонент О2долга связан с
устранением молочной кислоты, кетоновых тел
и других недоокисленных продуктов. Этот
компонент О2долга устраняется гораздо
медленнее - за 1,5-2 ч отдыха.
Physiology of Energy

26.

Биохимическая характеристика зон относительной
мощности работы при выполнении спортивных
нагрузок
Продолжит
ельность
работы
О2
О2
запрос потребл.
л/мин % от
МПК
Максималь
ая
От 2-3
до 20-25 с
40
Субмакси
альная
От 20-25 с
до 3-5 мин
ольшая
она
ощности
Умеренная
О2
дефицит
% от
запроса
Основные
пути
ресинтеза
АТФ
Основные
источники энерги
До 20-30
90-95
КФ
Гликолиз
Внутримышечные
(КФ, гликоген)
10-30
80-100
50-80
Гликолиз
КФ
Аэробное
окисление
Внутри- и
внемышечные (КФ
гликоген мышц и
печени,
фосфолипиды)
От 3-5 до
40-50 мин
4,5-7
85-95
20-30
Аэробное Внутри- и
окисление внемышечные
Гликолиз гликоген мышц,
печени, липиды
Более 40-50
мин
3-4
60-80
До 5-10
Аэробное Преимущественно
окисление внемышечные
(гликоген печени и
Physiology of Energy
мышц, липиды)

27.

Динамика биохимических показателей крови при
выполнении спортивных нагрузок
Работа в зонах мощности
Биохимиче
ские
показатели
Покой
крови
макси
мальной
субмакси
мальной
большой
умеренной
До 10-16
До 20-25
8,9-16,6
4,0-5,5
До 6,9-7,0
7,3
Не измен.
Лактат,
ммоль/л
0,5-1,0
рН
7,36-7,42 7,2-7,3
Снижение Норма
щелочного
резерва, %
-40
-60
-12
Незначит.
измен.
Глюкоза,
ммоль/л
3,3-6,0
До 7-8
До 10-13
Незначит.
измен.
Возможно
снижение до
2,2-2,7
Мочевина, 2,5-8,0
ммоль/л
Не
измен.
Возможно повышение до 10-13
Physiology of Energy

28.

Режим работы
(состояние
организма)
Вид
Энерготрат
физичес
ы,
кой
кДж/с
нагрузки
Лактат
Ведущий
крови,
энергетиче
ский
ммоль/л
процесс
Покой
-
0,10-0,12
0,5-1,0
Аэробный
Мощность ПАО
Легкий бег
(2,73 м/с)
0,5-1,0
2,0-2,5
Аэробный
Мощность ПАНО
Марафон
(5,0-5,4
м/с)
1,5-1,8
4,0-4,5
Аэробный
Максимальная
мощность:
аэробная (100%
МПК)
Бег 1500м
(7, 17,5 м/с)
4,0-4,5
До 12-15
Аэробный и
гликолиз
гликолитическая
Бег 400-800
м
(8,5-9,0
м/с)
6,3-7,0
До 20-25
Гликолиз
анаэробная
Бег 60-100 м
(10 м/с)
До 8,0-8,2
До 6,0-8,0
Алактатный
(АТФ + КФ)
Physiology of Energy

Повышайте уровень АТФ для быстрого восстановления и роста

АТФ представляет собой источник внутриклеточной энергии, контролирующий почти все функции мышц и определяющий уровень силы и выносливости. Он также регулирует анаболическую ответную реакцию на тренинг, а также влияние большинства гормонов на клеточном уровне. Вполне можно предположить, что чем больше АТФ содержится в мышцах, тем они будут больше и мощнее.

Факт в том, что интенсивный тренинг бодибилдера исчерпывает запасы АТФ в мышцах. И это состояние опустошенности может длиться несколько дней, препятствуя росту мышц. В частности, перетренированность является результатом длительного нахождения организма в состоянии истощения запасов АТФ. Для того, чтобы восстановить уровень АТФ в мышцах, вы должны научиться эффективно использовать различные стимуляторы повышения уровня АТФ.

Уровень АТФ во время тренировки

Для мышечных сокращений используется энергия АТФ, содержащегося в мышечных клетках. Однако, при интенсивных сокращениях запас этого «горючего» быстро исчерпывается. Именно по этой причине вы не можете вечно продолжать вырабатывать такое же усилие. Чем тяжелее вы тренируетесь, тем больше АТФ вам требуется. Но чем больше становится отягощение, тем больше ваши клетки теряют способность воссоздавать АТФ. Вследствие этого, тяжелая нагрузка быстро «валит вас с ног», вызывая огромное разочарование, поскольку это лишает вас возможности выполнить последние, самые продуктивные, повторения. Именно тогда вы начинаете чувствовать сокращения мышц, ощущаете каждое волокно, но все они перестают работать из-за нехватки АТФ.

В действительности, уровень АТФ является одним из самых лимитирующих факторов в тренинге. Он сокращает количество стимулирующих рост повторений в каждом сете. Для того, чтобы возместить отсутствие интенсивности в конце сета, вы выполняете большее число сетов, что в результате дает значительный объем неэффективной работы с низкой интенсивностью.

В противоположность распространенному мнению, уровень АТФ после выполнения сета вовсе не нулевой. На самом деле, он очень далек от нуля. Медицинские исследования показывают, что уровень АТФ в мышцах снижается на 25% после 10 секунд максимальных мышечных сокращений (1). После 30 секунд выработки таких усилий уровень АТФ находится на отметке 50%. Поэтому вы все еще далеки до полного исчерпания запасов АТФ. Но даже небольшого снижения его уровня достаточно для того, чтобы не позволить мышцам сокращаться с такой мощностью, как вам бы хотелось. Конечно, запасы АТФ все больше и больше снижаются, когда вы выполняете более одного сета. Исследования показали, что 4-х минут отдыха было недостаточно для полного восстановления уровня АТФ в волокнах типа 2 после 30 секунд мышечных сокращений (2). Следовательно, когда вы начинаете второй сет, резерв АТФ в мышцах не оптимален. По мере того, как вы выполняете все больше и больше подходов, уровень АТФ становится все меньше.

Что происходит с АТФ после тренировки

После завершения тренировки резервы АТФ могут быть значительно сокращены. Когда вы отдыхаете, вы, возможно, ожидаете, что ваши мышцы получают возможность восстановиться. Ведь потребность в АТФ в это время снижается, а выработка увеличивается. Однако, помните, что в начале периода восстановления уровень АТФ низкий, поэтому его возвращение к нормальному займет некоторое время. Какое? Как это ни удивительно, для полного восполнения запасов АТФ потребуется от 24 до 72 часов.

Если вы находитесь в состоянии перетренированности, уровень АТФ не вернется к нормальному, базовому уровню. Хотя, к сожалению, после тренировки уровень АТФ несколько сокращен, он все еще остается достаточно высоким. Для этого есть несколько причин, среди них следующие:

1) Когда вы тренируетесь, в мышечных клетках накапливается натрий. После этого они должны избавиться от натрия с помощью механизма, называемого Na-K-АТФ-азным насосом. Как свидетельствует из названия, этот механизм использует АТФ в качестве источника энергии.

2) Если у вас болят мышцы, значит в них скопилось большое количество кальция. Они будут стараться содержащийся в них кальций вернуть в его естественные хранилища, но для этого тоже требуется определенный запас АТФ.

3) Другой интересный аспект касается образования глютамина. После тренировки потребность организма в глютамине очень сильно возрастает. Для того, чтобы справиться с возросшей потребностью в глютамине, организм начинает вырабатывать больше глютамина из других аминокислот, таких как аминокислоты с разветвленными цепями. Возникает состояние «перетягивания каната». По мере увеличения использования глютамина, увеличиваются и усилия организма по производству нового глютамина. Производство глютамина очень затратно с энергетической точки зрения - имеется в виду АТФ. Происходит оно в основном в мышцах, но уровень АТФ в мышцах после тренировки понижен, что препятствует выработке глютамина. Через некоторый промежуток времени выработка его уже не покрывает увеличившуюся потребность, что приводит к достоверному сокращению уровня глютамина после тренировки. С другой стороны, чтобы сделать это сокращение минимальным, организм старается увеличить скорость синтеза глютамина, используя еще больше АТФ. Следовательно, потребление АТФ мышцами остается высоким в течение длительного периода времени после тренировки, и это является причиной слишком длительного восстановления мышц.

АТФ и диета

Процесс тренинга и мышечного развития довольно труден даже тогда, когда вы нормально питаетесь. Но ведь культуристам время от времени приходится соблюдать низкоуглеводную диету. Вы можете себе представить, как сокращение приема пищи влияет на энергетический уровень в клетке. Во время длительной ограничительной диеты энергетическое равновесие в мышцах нарушается, что еще более усложняет поддержание нормального уровня АТФ. Это приводит к снижению силы при тренинге и длительному восстановлению после тренировки.

Функции АТФ

Помимо основной функции обеспечения энергией мышечных сокращений и контроля содержания электролитов в мышцах, АТФ выполняет множество других функций в мышцах. Например, он контролирует скорость синтеза протеина. Подобно тому, как строительство здания требует наличия исходных материалов и определенного расхода энергии, так и строительство мышечных тканей. Материалом служат аминокислоты, а источником энергии - АТФ. Анаболизм является одним из самых энергопотребляющих процессов, которые происходят внутри мышц.

Он потребляет столько АТФ, что при сокращении этого вещества на 30%, большая часть анаболических реакций останавливается. Таким образом, колебания уровня АТФ очень сильно сказываются на анаболическом процессе.

Этим объясняется тот факт, что во время тренировки мышцы не растут. Когда человек тренируется, уровень АТФ у него слишком низок. И если вызвать анаболический процесс именно в этот момент, то он еще больше бы исчерпал запас АТФ, снижая вашу способность сокращать мышцы. Чем раньше уровень АТФ вернется к нормальному, тем раньше начнется процесс синтеза протеина. Таким образом, несмотря на то, что очень важно повышать уровень АТФ во время тренировки, даже еще важнее делать это после тренировки, чтобы мышцы росли. АТФ также необходим анаболическим гормонам, чтобы они могли «творить чудеса». Как тестостерону, так и инсулину требуется АТФ для нормального функционирования.

Как это ни парадоксально, уровень АТФ контролирует и темп катаболизма. Основные протеолитические пути требуют затрат энергии для того, чтобы разрушать мышечную ткань. Хотя вы можете предположить, что послетренировочное сокращение уровня АТФ может спасти мышцы от катаболизма, к сожалению, это не так. Когда уровень АТФ в мышцах достигает нижнего порога, запускаются другие катаболические механизмы, не зависящие от АТФ. Содержащийся в клетках кальций начинает выводиться из клеток, вызывая основные нарушения. Более выигрышным вариантом будет усиление и анаболического, и катаболического процессов, чем сильный катаболический процесс и слабый анаболический. Следовательно, чем больше АТФ - тем лучше.

Как повысить уровень АТФ

Как культурист, вы обладаете огромным арсеналом мощных средств для повышения уровня АТФ. В данной статье я расскажу об использовании креатина, прогормонов и рибозы. Не буду останавливаться на углеводах, поскольку о них, как об источнике энергии, и так уже слишком много было написано. Глютамин и аминокислоты с разветвленными цепями тоже оказывают небольшое влияние на выработку АТФ, но в этот раз я не буду останавливаться на них подробно. Важно, чтобы вы поняли, что все эти стимуляторы характеризуются разновременностью срабатывания, поэтому являются лишь вспомогательными.

Самым быстродействующим стимулятором является D-рибоза. Молекула АТФ рождается при взаимодействии одной молекулы аденина, трех фосфатных групп и одной молекулы рибозы. Таким образом, рибоза является необходимым сырьем для синтеза АТФ. Рибоза также контролирует активность фермента 5-фосфорибозил-1-пирофосфат, необходимого для ресинтеза АТФ.

Я рекомендую употреблять по крайней мере 4 грамма рибозы за 45 минут до тренировки. У вас не только сразу же повысится уровень силы, но рибоза также предотвращает влияющее на результативность нервное утомление, когда вы добавляете повторения в самых тяжелых сетах.

Однако, рибоза действует не только как стимулятор выработки АТФ. Исследования ученых показали, что она оказывает эффективное влияние на увеличение уровня АТФ и на увеличение уровня уридинтрифосфата, являющегося еще одним, хотя и менее известным, источником клеточной энергии. Уридинтрифосфат имеет наиболее важное значение для медленносокращающихся волокон. Исследования показывают, что он оказывает сильное анаболическое влияние на мышцы. Он также помогает им избавиться от нашествий натрия, помогая калию проникнуть внутрь мышечных клеток, что, в свою очередь, щадит запасы АТФ.

Я считаю креатин умеренным стимулятором АТФ, а стимуляторами АТФ самого длительного действия являются прогормоны. Я сомневаюсь в том, что креатин способен оказывать стимулирующий эффект на выработку АТФ у тех, кто ведет малоподвижный образ жизни. Однако, как уже рассказывалось выше, интенсивная физическая нагрузка снижает уровень АТФ на длительное время. В этом случае креатин может обеспечить необходимый исходный материал для ресинтеза АТФ, благодаря его трансформации в фосфокреатин внутри мышц. Проведенный европейскими учеными эксперимент показал, что при дополнительном употреблении спортсменами высокого уровня тренированности креатина на протяжении пяти дней в количестве 21 г в день, вместе с употреблением 252 г углеводов, уровень АТФ в мышцах увеличился аж на 9%, а при употреблении предшественника АТФ фосфокреатина - на 11% (3).

Что касается прогормонов, проведенные на животных исследования показали, что уровень мужских гормонов очень сильно влияет на уровень АТФ в мышцах. При кастрировании крыс уровень АТФ в мышцах у них был понижен (4). Когда крысам вводили тестостерон, уровень АТФ восстанавливался до нормальной отметки. Результаты этого исследования доказали важность употребления стимуляторов выработки тестостерона, особенно в период после тренировки, когда уровень тестостерона снижается даже просто от употребления углеводов. Вы можете употреблять интракринный стимулятор выработки тестостерона, такой как андростенедион, и эндокринные стимуляторы, такие как предшественники нандролона. Таким образом, вы можете естественным образом отрегулировать снижающийся уровень тестостерона в крови, замещая его нандролоном, а также повысить при этом уровень тестостерона в мышцах с помощью андростенедиона.
Рибоза, креатин и прогормоны являются эффективными стимуляторами выработки АТФ. Комбинированный их прием повысит ваш силовой уровень во время тренинга с отягощениями, улучшая при этом мышечное восстановление и рост после тренировки. Поскольку их влияние по-разному распределяется по времени, и у них разный способ действия, они приносят оптимальные результаты, работая в синергии.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Ресинтез АТФ – это метаболический процесс, перманентно про-ис-хо-дя-щий в ор-га-низ-ме . Почему? Потому что АТФ является уни-вер-саль-ным источником энергии для всех клеток организма . Рас-шиф-ро-вы-ва-ет-ся аббревиатура АТФ, как аде-но-зин-три-фос-фор-ная кислота. И именно она обеспечивает работу мозга, сердца, мышц и все-го остального . Со-от-вет-ст-вен-но, раз она является источником энергии, её за-па-сы мо-гут истощаться. В зависимости от ин-тен-сив-нос-ти истощения, ресинтез АТФ мо-гут обес-пе-чи-вать фос-фо-ри-ли-ро-ва-ние, гликолиз или окисление . Каждый способ ха-рак-те-ри-зу-ет эф-фек-тив-ность и дли-тель-ность процесса. Наиболее эффективно фос-фо-ри-ли-ро-ва-ние, а дольше всего син-те-зи-ро-вать АТФ может окисление .

Зачем вообще Вам знать, как осуществляется ресинтез АТФ? Затем, что это позволит Вам более адекватно составлять себе тренировочный план , подбирать со-от-вет-ст-вую-щее спортивное питание, тре-ни-ро-вать-ся в наиболее оптимальном объё-ме и лиш-ний раз убедиться в не-об-хо-ди-мос-ти кардио тренировок . Например, имен-но вви-ду сис-те-мы ресинтеза АТФ длительность силовой тренировки не должна пре-вы-шать 60 ми-нут . Просто потому, что на-кап-ли-ва-ет-ся избыток лактата, что при-во-дит к ре-син-те-зу АТФ за счёт окисления три-гли-це-ри-дов, а не углеводов. С другой сто-ро-ны, ес-ли есть не-об-хо-ди-мость похудеть и, сле-до-ва-тель-но, мо-би-ли-зо-вать жир-ные кис-ло-ты, то наи-бо-лее эф-фек-тив-но проводить тре-ни-ро-воч-ные сессии дольше 90 минут. Вот да-вай-те и раз-бе-рём-ся, что, как и почему надо делать!

Системы ресинтеза АТФ

Фосфорилирование – это три типа реакций, основной из которых является процесс ре-син-те-за АТФ при участии креатина . Всего процесс фос-фо-ри-ли-ро-ва-ние длится око-ло 10–15 се-кунд, но первые 5–6 секунд АТФ вос-ста-нав-ли-ва-ет-ся ис-клю-чи-тель-но этой сис-те-мой . Пос-ле этого подключается гликолиз, и именно поэтому существует такая су-щест-вен-ная раз-ни-ца между силовыми показателями на раз и силовыми показателями на 2–3 пов-то-ре-ния. Ре-син-тез креатина занимает около 5–15 минут, причём за первые 1,5 ми-ну-ты вос-ста-нав-ли-ва-ет-ся примерно 65%, за последующие 4,5 минуты 85% и уже по-том ос-тав-шие-ся 15% . Имен-но поэтому во время силовых циклов существует не-об-хо-ди-мость в дол-гом от-ды-хе между подходами и низком количестве повторений.

Гликолиз – это процесс ресинтеза АТФ при участии углеводов в форме гликогена . На-чи-на-ет-ся этот процесс при нагрузках, длящихся дольше нескольких секунд . Все-го гли-ко-лиз участвует в процессе вос-ста-нов-ле-ния АТФ около 2–3 минут в за-ви-си-мос-ти от вы-нос-ли-вос-ти спортсмена . Но доля гликолиза по истечении 30 се-кунд бес-пре-рыв-ной нагрузки перманентно снижается, а в процессе гликолиза вы-ра-ба-ты-ва-ет-ся всё боль-ше пирувата, который затем ме-та-бо-ли-зи-ру-ет-ся в лактат, сти-му-ли-руя вос-па-ле-ние в мышечных волокнах . По факту уже по истечении 15 се-кунд на-чи-на-ет-ся син-те-зи-ро-вать-ся пируват, а значит, подключается система окис-ле-ния. Дли-тель-ность отдыха для вос-ста-нов-ле-ния этой системы ресинтеза АТФ на-хо-дит-ся в диа-па-зо-не 30–90 секунд . В случае, если атлет це-ле-на-прав-лен-но пы-та-ет-ся до-бить-ся ме-та-бо-ли-чес-ко-го стресса , ему может быть выгодно отдыхать 30 се-кунд, но ес-ли при-ме-ня-ет-ся объёмно-силовой тренинг , то пред-поч-ти-тель-но от-ды-хать 60–90 секунд.

Окисление – это процесс ресинтеза АТФ посредством мобилизации и дальнейшей ути-ли-за-ции жирных кислот и/или углеводов. «Топливо» может поступать из три-гли-це-ри-дов и гликогена в мышцах, липидов из подкожно-жировой клетчатки и из глю-ко-зы в кро-ви . Но в том случае, если гликогена будет не хватать для выполнения тя-жё-лой на-груз-ки, организм будет разрушать белки скелетной мускулатуры для мо-би-ли-за-ции ами-но-кис-лот, и их дальнейшей утилизации в виде источника АТФ . Имен-но по-это-му, ес-ли человек тренируется в большом количестве повторений, ему име-ет смысл уве-ли-чить количество потребляемых углеводов и/или употреблять «прос-тые» уг-ле-во-ды во время тренировки. Во время похудения может быть осмысленно при-ни-мать BCAA .

Заключение: поскольку процесс фос-фо-ри-ли-ро-ва-ния осу-щест-вля-ет-ся пре-иму-щест-вен-но при учас-тии креатина, во время силовых циклов имеет смысл при-ни-мать креа-тин в виде добавки . Оптимальным временем под нагрузкой во время объём-ных цик-лов является 30–40 секунд, потому что потом начинает активно вы-ра-ба-ты-вать-ся пируват. Чем более развиты митохондрии, тем дольше организму уда-ёт-ся эф-фек-тив-но ути-ли-зи-ро-вать продукты распада, образующиеся в процессе гли-ко-ли-за, что по-ло-жи-тель-но ска-зы-ва-ет-ся на адап-та-ци-он-ном резерве атлета и пре-дель-но эф-фек-тив-ном для него тренировочном объёме – это ещё одна причина де-лать кар-дио на мас-се.

Источники

Ncbi.nlm.nih.gov/pmc/articles/PMC2716334/

Ncbi.nlm.nih.gov/pmc/articles/PMC4898252/

Ncbi.nlm.nih.gov/pmc/articles/PMC2917728/

Ncbi.nlm.nih.gov/pmc/articles/PMC3005844/

Sciencedirect.com/science/article/pii/S1550413112005037

Ncbi.nlm.nih.gov/pubmed/8964751/

Ncbi.nlm.nih.gov/pmc/articles/PMC1157744/

Ncbi.nlm.nih.gov/pubmed/4030556/

Ncbi.nlm.nih.gov/pubmed/9950784/

Ncbi.nlm.nih.gov/pubmed/2600022/

Ncbi.nlm.nih.gov/pubmed/20847704

Поделиться